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Our Contributions Runtime Benchmarks

We build a data structure to sample rows from the exponentially tall matrix A in time

e '%'x.
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Motivating Application: Given an (/N + 1)-dimensional sparse tensor 7, compute an
approximate Candecomp / PARAFAC decomposition:
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Decomposition of rank R consists of factor matrices U; € R, 1 < 7 < N + 1 to store the
outer product components, vector o € R to store generalized singular values. Want to
capture values of nonzero entries AND locations of zero entries. Problem is non-convex

and NP-hard.

logarithmic in its row count and quac

distribution. To decompose an (N + 1

ratic in its column count from the exact leverage score
)-dimensional tensor, our method achieves the lowest

asymptotic runtime for sketched CP decomposition compared to recent SOTA methods.
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Our method accelerates decomposition of sparse tensors with billions of nonzero entries.

Methodology

Uy In sequence, each conditioned on the last.

Sample rows from U, ...,
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Alternating Least-Squares (ALS): Iteratively optimize one factor at a time while keeping the . . . . . . Amazon (~1.869 nz) Reddit* (~4.769 n2)
others constant (also called block coordinate descent). Optimization problem for Uy is an ! : : 4 ) 040- [t | 3 e b
overdetermined linear least-squares problem 0.38 1 ® Y « S e
min ‘ AX — BHF (1) S1 - 0.36 - : r ¢ = 0.08- t
X v t
where A = Uy ® ... ® Uy, B is a sparse matrix. ® denotes a Khatri-Rao Product (KRP), a 52 PINV 0348 | O |||
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Least-squares problems of this form also arise in PDE-inverse problems, signal processing, S ino 4 I | e £ — STS-CP (ours), J=65,536
and compressed sensing. =ampling Frocedure: Sample 7 ~ Unif 0, 1], fin P AL LEY J-165.440
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Figure 3. Fit vs. Time, Reddit Tensor (4.8 billion nonzeros) for CP-ARLS-LEV and STS-CP (ours). Thick lines are
averages of individual traces.

Level 2: branch right iff le ]+ S ] <.
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Problem: Design matrix A from Equation (1) has Hj.vzl I; rows. May not even fit in memory!
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Solution: Generate random sampling matrix S with J < H;\f:1
min g HSAX — SBHF.

I; rows, solve

Key: For nodes v in search tree corresponding to row interval [Sy(v), Si(v)] (up to level
log(I./R)), compute and store “partial gram matrix”:
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Construction runtime is O(1;,R?) with storage requirement O(I;R). During sampling, comput-
ing the branch decision at each internal node costs O(R?) with cached partial gram matrices.
O(R?) work required below level log(1;,/R), but can improve to O(R*log R) (see paper). Total
time per sample is O(R*log I},).
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Choosing S as a sampling matrix preserves sparsity of B. To guarantee residual within (1 + ¢)
of true minimum w.h.p. (1 — 9), sample O(R/(d)) rows proportional to leverage scores:
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