
Distributed-Memory Sparse Kernels
for Machine Learning

Vivek Bharadwaj*, Aydın Buluç*†, James Demmel*

*EECS Department, UC Berkeley
†Computational Research Division, Lawrence Berkeley National Laboratory

Sparse Kernels in Machine Learning
• Sampled Dense-Dense Matrix Multiplication (SDDMM) and

Sparse-times-Dense Matrix Multiplication (SpMM) appear in a variety of
applications:
– Graph Neural Networks with Self-Attention
– Collaborative Filtering with Alternating Least Squares
– Document Clustering by Wordmover’s Distance

• Both kernels involve a single sparse matrix and two (typically tall-
skinny) dense matrices. Typically, applications use both operations in
sequence.

• When the sparse matrix is the adjacency matrix of a graph, we interpret
the kernels as follows:
– SDDMM generates a message on each edge
– SpMM aggregates messages from edges incident to each vertex

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 2

Message Generation

Message Aggregation

Existing Work

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 3

Cache-aware tiling: Sampled Dense Matrix Multiplication for High-
Performance Machine Learning: Nisa et al. (HiPC 2018)

Sparse Matrix Reordering: Adaptive sparse tiling for sparse matrix
multiplication: C. Hong et al. (PPOP 2019)

Tile Shape Tuned to Sparsity: A novel data transformation and
execution strategy for accelerating sparse matrix multiplication on
GPUs: P. Jiang et al. (PPOP 2020)

Local SDDMM / SpMM Kernel Fusion: FusedMM: A Unified SDDMM-
SpMM Kernel for Graph Embedding and Graph Neural Networks: M. K.
Rahman et al. (IPDPS 2021)

Shared Memory SDDMM, SpMM, FusedMM
1.5D Algorithms on Square Matrices: Communication-Avoiding
Parallel Sparse-Dense Matrix-Matrix Multiplication: P. Koanantakool et
al. (IPDPS 2016)

1.5D Algorithms embedded in GNNs: Reducing communication in
graph neural network training: Tripathy et al. (SC 20)

1.5D and 2D Algorithms, One-Sided Communication: Distributed-
memory parallel algorithms for sparse times tall-skinny-dense matrix
multiplication: Selvitopi et al. (ICS 21)

Distributed Sparsity-Agnostic SpMM

Optimize for Extra Memory: Communication-Optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms: E. Solomonik
and J. Demmel
(EuroPar 2011)

Optimized Schedules for Non-Square GEMM: Red-blue pebbling
revisited: Near optimal parallel matrix-matrix multiplication: G.
Kwasniewski (SC 19)

Distributed Memory Dense GEMM

?

Distributed SDDMM and FusedMM

Our Contributions

• We design the first distributed-memory implementations of SDDMM based on
communication-avoiding algorithms for SpMM in the literature. Our implementations benefit
from additional memory by replicating inputs and outputs.

• We give strategies to elide communication when executing SDDMM and SpMM in
sequence (FusedMM), eliminating communication and changing the optimal replication factor
for both kernels.

• We benchmark our algorithms on hundreds of nodes of LBNL Cori, testing with both Erdos-
Renyi random matrices and billion-scale real-world matrices.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 4

Distributed-Memory
SDDMM Algorithms

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 5

Symbols

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 6

Symbol Definition
𝑆, 𝑅 𝑚×𝑛 sparse matrices

𝐴 𝑚×𝑟 dense matrix

𝐵 𝑛×𝑟 dense matrix

𝜙 The ratio nnz(𝑆)/𝑛𝑟

∗ Elementwise multiplication

⋅ Matrix Multiplication

Symbols and Definitions
• Given dense matrices 𝐴, 𝐵 of dimensions 𝑚×𝑟, 𝑛×𝑟, respectively, and a sparse matrix 𝑆 of

dimensions 𝑚×𝑛, define Sampled Dense-Dense Matrix Multiplication as:

SDDMM 𝑆, 𝐴, 𝐵 ≔ S ∗ A ⋅ 𝐵!

• Output has nonzero locations identical to 𝑆

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 7

Symbols and Definitions
• We distinguish between the SpMM operation that multiplies 𝑆 and 𝐴 and the operation that

multiplies 𝑆! and 𝐵. GNNs, collaborative filtering require both.

• Define SpMMA, SpMMB as:

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 8

SpMMB 𝑆, 𝐴 ≔ 𝑆! ⋅ 𝐴SpMMA 𝑆, 𝐵 ≔ 𝑆 ⋅ 𝐵

Symbols and Definitions

• Applications typically make a call to SDDMM (message generation) and feed the sparse
output directly to an SpMM operation (message aggregation)

• Define FusedMMA, FusedMMB as compositions of SDDMM with SpMMA, SpMMB

FusedMMA 𝑆, 𝐴, 𝐵 ≔ SpMMA SDDMM S, A, B , B

FusedMM𝐵 𝑆, 𝐴, 𝐵 ≔ SpMMB(SDDMM S, A, B , A)

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 9

Sparsity-Agnostic Distributed SpMM

• Sparsity-agnostic algorithms operate similarly to
distributed dense GEMM algorithms (Cannon, SUMMA)
by shifting large blocks 𝐴, 𝐵, and 𝑆.

• Do not benefit from graph partitioning, rely on random
permutations of the rows and columns of 𝑆.

• We categorize such algorithms by the choice of which
submatrices they replicate, propagate, and keep
stationary

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 10

Converting SpMM Algorithms to SDDMM Algorithms
• SDDMM and SpMM have identical data access patterns. Consider serial algorithms for both

kernels:

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 11

• Every nonzero (i, j) requires an interaction between row i of A and row j of B. As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for SDDMM with
identical communication characteristics, and vice-versa.

for 𝑖, 𝑗 ∈ 𝑆
𝑅"# ≔ 𝑆"#(𝐴": ⋅ 𝐵#:!)

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴": += 𝑆"#𝐵#:

A ≔ SpMMA 𝑆, 𝐵

Converting SpMM Algorithms to SDDMM Algorithms
• Consider any distributed algorithm for SpMMA that performs no replication. For all indices 𝑘 ∈
[1, 𝑟], the algorithm must (at some point)
– Co-locate 𝑆"#, 𝐴"$, 𝐵#$ on a single processor
– Perform the update 𝐴"$ += 𝑆"#𝐵#$

• Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is initialized to 0.

2. Change 𝐴 from an input to an output.

3. Have each processor execute the local update: 𝑆"# += 𝐴"$𝐵#$

The resulting algorithm performs SDDMM (up to multiplication with the values
initially in 𝑺) with communication characteristics and data layout identical to the original.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 12

Converting SpMM Algorithms to SDDMM Algorithms
• 1.5D and 2.5D SpMM algorithms replicate input / output matrices to reduce communication

bandwidth (using extra memory)

• Inputs typically replicated via broadcast at the beginning of the algorithm

• Reduction required at the end of the algorithm to sum up temporary accumulation buffers

• We extend our transformation procedure to algorithms with replication by:

– Replacing initial broadcasts of input buffers with terminal reductions of those buffers
– Replacing terminal reductions of output buffers with initial broadcasts

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 13

Communication-Eliding
Strategies for FusedMM

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 14

A Simple Strategy for Distributed FusedMM
• Consider the FusedMMA operation. The simplest distributed implementation executes the

SDDMM and feeds the intermediate result to SpMM

• Identical input / output data layouts let us avoid reorganizing 𝐴, 𝐵, and 𝑆

• Still performs replication, propagation for both SDDMM and SpMM

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 15

Communication Elision: Replication Reuse
• We could replicate the same dense input matrix for both SDDMM and SpMM. We call this

strategy replication reuse

• We save communication by increasing the replication factor relative to the unoptimized
sequence

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 16

Communication Elision: Local Kernel Fusion
• We could execute a local SDDMM and SpMM on each processor without any intermediate

communication. We call this strategy local kernel fusion.

• We save communication by decreasing the replication factor compared to the unoptimized
case

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 17

Communication Elision: Local Kernel Fusion

• Caveat: Cannot apply this strategy for any algorithm that splits the dense matrices by
columns among processors

• Message generation on each edge must precede aggregation. Cannot begin SpMM with
partial results on the edges.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 18

Algorithm Data Movement

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 19

Replication and Propagation Choices
• We design our algorithms by deciding which matrices to replicate, propagate, and keep

stationary. For the sake of our communication analysis, assume 𝑚 ≈ 𝑛.

• These choices affect the communication complexity of each algorithm

• The optimal algorithm choice depends on the ratio between the nonzero count of the sparse
matrix and the total entries in either dense matrix, which we define as 𝜙.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 20

Replication and Propagation Choices

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 21

1.5D Algorithms
• Two variants, both replicating a dense matrix:

– Cyclically shift the dense matrix, keep the
sparse matrix stationary

– Cyclically shift the sparse matrix, keep
the dense matrix stationary

• Choice affects the # of words communicated:

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 22

𝑂
𝑛𝑟
𝑝6/8

Dense Shift

𝑂
𝑛𝑟𝜙6/8

𝑝6/8

Sparse Shift

2.5D Algorithms
• Two variants, both shifting at least one

dense matrix:
– Replicate one dense matrix, cyclically

shift the other dense matrix and a
sparse matrix

– Replicate the sparse matrix, cyclically
shift both dense matrices

• # of words communicated:

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 23

𝑂
𝑛𝑟𝜙8/9

𝑝8/9

Dense Replicate

𝑂
𝑛𝑟𝜙6/9

𝑝8/9

Sparse Replicate

Predictions
• When 𝜙 = nnz 𝑆 /𝑛𝑟 is low:

– Communicating the sparse matrix is cheaper
– 1.5D sparse shifting and sparse replicating algorithms should perform faster

• When 𝜙 is high:
– Communicating the dense matrix is cheaper
– 1.5D dense shifting and 2.5D dense replicating algorithms should perform faster

• For the range of processor counts we consider, 1.5D algorithms usually outperform 2.5D algorithms

• 1.5D communication-eliding FusedMM saves ~30% of overall communication; 2.5D communication-
eliding FusedMM saves 20% of overall communication.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 24

Experiments

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 25

• Experiments run on Cori, a Cray XC40 at
Lawrence Berkeley National Laboratory with 256
Xeon Phi Knight Landing (KNL) nodes

• Each node:
– Has a single CPU with 68 cores
– Runs at 1.4 GHz
– Communicates with other nodes via an Aries

interconnect arranged using a Dragonfly
topology

• We use a hybrid MPI + OpenMP programming
model with a single MPI rank and 68 threads
node

Platform Details

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 26

Credit: National Energy Research Scientific Computing

Performance for Varying ϕ on Erdos-Renyi Matrices

• For 𝑚 = 𝑛 = 2!! and 32 processors, we vary the nonzero count per row of 𝑆 and the dense matrix
column count 𝑟 to determine which of our four algorithms performs best

• Prediction closely matches theory: 1.5D dense shifting or 1.5D sparse shifting algorithms are
optimal, and the choice between the two depends on the ratio 𝜙.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 27

Strong Scaling

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 28

• Compared our FusedMM implementations to two repeated calls of SpMM from the PetSC library (since there is no
existing implementation of SDDMM to compare against)

• PetSC only supports 1D partitions of all matrices and does not take advantage of replication. Leads to poor scaling at
high processor counts.

• Algorithms tested on several matrices from the SuiteSparse and a significantly denser matrix from computational biology.
𝑟 = 128 for all experiments

Matrix Side Length Nonzero Count NNZ per Row
amazon-large.mtx 14,249,639 230,788,269 ~16

uk-2002.mtx 18,484,117 298,113,672 ~16
eukarya.mtx 3,243,106 359,744,161 ~111

arabic-2005.mtx 22,744,080 639,999,458 ~28
twitter7.mtx 41,652,230 1,468,365,182 ~35

Strong Scaling

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 29

Predicted vs. Observed Optimal Replication Factor

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 30

Application Benchmark 1: Collaborative Filtering
• Netflix-challenge-type computation: compute a low-rank factorization of a sparse matrix 𝑆 =
𝐴 ⋅ 𝐵! for tall-skinny embedding matrices 𝐴, 𝐵 for the rows and columns.

• Want to minimize squared error norm only on the nonzero entries of 𝑆

• Idea: alternately optimize either 𝐴 or 𝐵, keeping the other matrix fixed. Solve an independent
least squares problem 𝑀𝑥" = 𝑏" for every row 𝑖 of the unfixed matrix

• Solution: use a Krylov method, conjugate gradients in our case. Use SDDMM / SpMM to
compute all query vectors 𝑀𝑥" in parallel.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 31

Application Benchmark 2: Graph Attention Network
• Graph neural networks learn embeddings for each

node of a graph. The key operation at each layer is
graph convolution, which aggregates embeddings
of neighbors of each vertex onto that vertex.

• A single-head GATN weights each edge by some
function of the incident vertex embeddings. Edge
weights become coefficients of the aggregation.

• Multi-head GATN: Concatenates the outputs of
single heads.

• Message generation / aggregation performed by
SDDMM, SpMM respectively.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 32

A B

T

C

𝑇, 𝐴 𝑇, 𝐵

𝑇, 𝐶

A B

T

C

𝐴 𝑇, 𝐴
+B 𝑇, 𝐵
+C 𝑇, 𝐶

Application Performance Breakdown

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 33

Summary
• We gave a theoretical communication analysis of sparsity-agnostic communication-avoiding

algorithms for SDDMM and FusedMM

• Our algorithms take advantage of extra memory on nodes by replicating inputs, scaling to
hundreds of nodes and thousands of cores

• We embedded and tested our algorithms within two applications that use FusedMM

• Further work:
– More effective overlap between communication and local computation
– Implementations with one-sided MPI or RDMA
– Porting implementation to GPUs

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 34

Thank you!

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 35

Read the paper here

Get the code at github.com/PASSIONLab/distributed_sddmm

https://arxiv.org/abs/2203.07673
https://github.com/PASSIONLab/distributed_sddmm

Extra Slides

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 36

Weak Scaling
• We examine scaling behavior when keeping the FLOPs per processor constant.

• Setup 1:
– Processor count doubles for each successive experiment
– The sparse matrix side-length doubles from experiment to experiment
– The nonzero count per row of the sparse matrix remains constant at 32
– The embedding dimension 𝑟 remains constant at 256

• The ratio 𝜙 = nnz 𝑆 /𝑛𝑟 remains constant

• The fraction of nonzeros in the sparse matrix successively decays by a factor of 2

• We expect 𝑝*/, communication scaling 1.5D algorithms and 𝑝*/- scaling for the 2.5D
algorithms

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 37

Weak Scaling

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 38

• Both local kernel fusion and replication reuse yield communication savings. Local kernel fusion tends to
outperform replication reuse

– Broadcast collective disproportionately expensive at higher processor counts

Node Count

Weak Scaling: Setup 1 Performance Breakdown

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 39

Weak Scaling: Setup 2
• Setup 2: For each successive experiment,

– Processor count quadruples
– The sparse matrix side length doubles
– The nonzero count per row of the sparse matrix doubles with an initial value of 32
– The embedding dimension 𝑟 remains constant at 256

• The ratio 𝜙 = nnz 𝑆 /𝑛𝑟 successively doubles

• The fraction of nonzeros in the sparse matrix remains constant

• We expect communication to stay constant for 1.5D dense shifting algorithms and even
decrease for the 2.5D algorithms. Unlikely in practice due to decreasing node locality.

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 40

Weak Scaling: Setup 2

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 41

• Increasing ratio 𝜙 causes poor scaling for the 1.5D sparse shifting algorithm.

• Communication costs of the 1.5D dense shifting algorithm do not depend on 𝜙, leads to better scaling

Node Count

Sparsity-Aware vs. Sparsity-Agnostic SpMM
• We categorize existing SpMM algorithms as either

sparsity-aware or sparsity-agnostic

• Sparsity-aware algorithms divide the dense and sparse
matrices evenly among processors. If a processor does
not own an embedding it needs to process a nonzero, it
fetches the embedding from the owning processor

• Communication Cost: Modelled by the edge cut metric
of a hypergraph partition of the sparse matrix

• These methods benefit from graph / hypergraph
partitioning to reorder nonzeros

Distributed Memory Sparse Kernels for Machine Learning | IPDPS 2022 42

0 0 1

1 0 1

0 1 1

1 1 0

0 1 0

𝑣% 𝑣& 𝑣'

𝑒%

𝑒&

𝑒'

𝑒(

𝑒)

Hypergraph Partition into
2 Components of a Sparse Matrix

EKM1 Metric: 2

