
Distributed-Memory Sparse Kernels for Machine Learning

• We introduce the first distributed-memory, sparsity-
agnostic, high-performance Sampled Dense-Dense 
Matrix Multiplication (SDDMM) algorithms. They can 
be used alone or in combination with Sparse-Times-
Dense Matrix Multiplication (SpMM)

• We give strategies to reduce processor-to-processor 
communication in a sequence of SDDMM and SpMM 
calls, a pattern that applications commonly use

• We benchmark our algorithms on 256 KNL CPU 
nodes of LBNL Cori, a Cray XC40 supercomputer. We 
measure performance on collaborative filtering and 
graph attention network applications
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Symbol Definition
𝑆, 𝑅 𝑚×𝑛 sparse matrices
𝐴 𝑚×𝑟 dense matrix
𝐵 𝑛×𝑟 dense matrix
𝜙 The ratio nnz(𝑆)/𝑛𝑟

Define SDDMM as the function:
SDDMM S, A, B = S ∗ (A ⋅ B!)

SpMMA 𝑆, B = S ⋅ 𝐵 SpMMB 𝑆, A = S! ⋅ 𝐴

Massive sparse matrices are ubiquitous in scientific 
computing and machine learning. Some examples:

Collaborative
Filtering

These three applications share two intensive computational 
kernels: Sampled Dense-Dense Matrix Multiplication
(SDDMM) and Sparse-Times-Dense Matrix Multiplication 
(SpMM). 

Both involve one sparse matrix and a pair of tall-skinny 
dense matrices. In the special case that the sparse matrix 
represents the adjacencies of a graph, we interpret their 
operation as follows:

SDDMM generates messages 
on the edges of the graph

SpMM aggregates messages 
from edges to incident nodes

Similarly, define two variants of SpMM:

All three kernels have an identical data access pattern:

for 𝑖, 𝑗 ∈ 𝑆
𝑅01 ≔ 𝑆01(𝐴0: ⋅ 𝐵1:3)

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴0: += 𝑆01𝐵1:

A ≔ SpMMA 𝑆, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐵1: += 𝑆10𝐴0:

B ≔ SpMMA 𝑆, 𝐴
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Distributed-Memory SDDMM Algorithms
Several existing works give communication-avoiding, 
distributed-memory algorithms for SpMM. Using the identical 
data access patterns of the kernels, we observe:

Any distributed-memory algorithm for SpMM can be 
transformed into a distributed-memory algorithm for 

SDDMM with identical communication characteristics, 
and vice-versa.

1.5D, 2.5D variants of SUMMA / Cannon replicate input and 
output operands to reduce communication bandwidth 
between processors. Inputs are typically replicated via 
broadcasts, outputs require reduction. To handle replication:

This work originally appeared as “Distributed-
Memory Sparse Kernels for Machine Learning” 
at the 36th IEEE International Parallel Parallel 
and Distributed Processing Symposium 
(IPDPS), May 30 through June 3, 2022. 

Scan the QR code to read the paper!

Convert the sparse input S to a 0-initialized output1

Use A as an output buffer instead of an input buffer2

Change each processor’s local update to 𝑆!" += 𝐴!#𝐵"#3

Convert initial input broadcasts to terminal reductions4

Convert terminal reductions to initial broadcasts5

Transformation Example: Begin with an SpMMA algorithm 
performing no replication of input / output operands.

Several applications execute SDDMM and feed the sparse 
output to SpMM, an operation we define as FusedMM:

FusedMMA 𝑆, 𝐴, 𝐵 ≔ SpMMA SDDMM S, A, B , B
FusedMM𝐵 𝑆, 𝐴, 𝐵 ≔ SpMMB(SDDMM S, A, B , A)

For FusedMM, we can eliminate unnecessary 
communication rounds and adjust the degree of 
replication through one of two strategies: replication reuse 
or local kernel fusion. Either approach lets us adjust the 
replication factor to further reduce communication costs.

Algorithm Data Movement

Data flow in our sparsity-agnostic algorithms is determined 
by choosing which operands we replicate, propagate, and 
keep stationary. These choices affect the communication 
volume for processors. Below, we assume 𝑚 ≈ 𝑛.

Matrix Side Length Nonzero Count NNZ per Row
amazon-large.mtx 14,249,639 230,788,269 ~16

uk-2002.mtx 18,484,117 298,113,672 ~16
eukarya.mtx 3,243,106 359,744,161 ~111

arabic-2005.mtx 22,744,080 639,999,458 ~28
twitter7.mtx 41,652,230 1,468,365,182 ~35
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Optimal Algorithm Selection
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Asymptotic Communication Costs

The choice of optimal algorithm depends on 𝝓. When 
𝜙 is low, communicating the sparse matrix is cheap, so 1.5D 
sparse shifting / replicating algorithms are fastest. For higher 
values of 𝜙, dense shifting / replicating algorithms run faster.

Grid search of optimal algorithm for 
varying values of 𝑟 and nonzero count 
per row of 𝑆, 𝑝 = 32 KNL nodes. 1.5D 
algorithms outperformed 2.5D 
algorithms on all tested configurations.

We used our algorithms to perform collaborative filtering with 
alternating least squares (ALS) and graph attention network 
inference (GAT). The benchmarks match our strong scaling 
experiments closely, with comparatively little time spent 
outside SDDMM / SpMM.

Benchmarks reported for 
amazon-large.mtx. 20 iterative 
CG updates were performed for 
the collaborative filtering 
application: 10 to optimize matrix 
A and 10 to optimize matrix B. 
The GAT benchmark was run on 
a 3-layer network with uniform 
node embedding dimension 256. 
The layers had 4, 4, and 6 
attention heads, respectively.

Benchmarks performed on up to 256 Knight’s Landing nodes on LBNL Cori. Black lines indicate the performance of the 
MatMatMult function available in PETSc, with black triangles indicating that a benchmark took longer than 3 hours.

Self-attention
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Symbol Definition
𝑝 Total processor count
∗ Elementwise multiplication
⋅ Matrix Multiplication

Objectives
Distributed-memory algorithms for general SpMM and 
SDDMM are heavily communication-bound. Our goals:
1. Build communication-avoiding algorithms for SDDMM 

based on existing designs for SpMM in the literature
2. Find strategies to reduce communication when 

performing SDDMM and SpMM in sequence, as many 
applications require.
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Only

Replicate which Matrix?

Propagate which matrices?

Both

Propagate which matrices?

Both Dense
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1.5D
Dense Shift
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Sparse Shift
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Dense

Replicate
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Sparse

Replicate

1.5D Dense Shift
Sparse Replicate

Every nonzero (i, j ) of S requires an interaction 
between row i of A and row j of B.
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