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Class Notes
• This recitation should be recorded (please tell me if I’m not recording!)

• By now, you should have gotten access to Cori and set up your NERSC account

• Make sure that you can SSH in; set up SSHProxy if you’re tired of retyping your password
every time. Set up a good working environment (Vim + tmux, VSCode are popular)

• REMEMBER:
– Compile on login nodes (or else you’ll wait forever)
– Run code in batch jobs or interactive nodes (or you’ll slow the login nodes for everyone)
– For this assignment, use KNL nodes, not Haswell
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Assignment 1
• Write the fastest single core matrix multiplication code for square matrices that you can.

• Let the matrix side length be 𝑛𝑛. For all 𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛 , the mathematical formula is

𝐂𝐂 𝐢𝐢, 𝐣𝐣 = 𝐀𝐀 𝐢𝐢, : ⋅ 𝐁𝐁 : , 𝐣𝐣
• Read as: element (𝑖𝑖, 𝑗𝑗) of C is a dot product between row 𝑖𝑖 of A and column 𝑗𝑗 of B

• Solution involves many fundamental high-performance computing (HPC) techniques
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The Simple Version
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void simpleGEMM(double *A, double *B, double* C, int n) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

C[i + j * n] = 0.0;

for(int k = 0; k < n; k++) {

C[i + j * n] += A[i + k * n] * B[k + j * n];

}

...

}

• All three of your matrices are all stored in column-major order, so elements in each column
are adjacent in each memory block (a long 1D array)

• The simplest possible code is:

The (i, k) entry is stored at A[i + k * n]

i

k



Grading and Report
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• Your job: optimize the simple code on the previous slide for a SINGLE core (no OpenMP or
multicore parallelism)

• Lots of things you can try. There’s a whole body of literature on matrix multiplication. See the
assignment page for links, do research, try interesting ideas that you find.

• You are graded on:
– Percentage of theoretical machine peak (relative to the entire class’s performance)
– Your report, which should include:

• Techniques you tried and relation to previous matrix multiplication work
• Justification for your techniques (any formulae or calculation you used in designing your

algorithm), diagrams, pseudocode, design choices
• Benchmarks, results of searches, and performance graphs



Performance Target
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• Last year’s record: 40% of the peak
(averaged over several values of 𝑛𝑛), still
lots of room for improvement

• Goal: at least 10-30% of the peak

• Optimizations are more than additive. For
example, writing a micro-kernel and using
SIMD might each produce a small
improvement…
– But together (done correctly), they

produce significant improvement

Your target

Naïve
GSI
MKL



01
Single level of blocking
(already in the starter code)

02
Multiple Levels of Blocking

03
Repack and realign matrices

(AKA copy optimizations)

04
Optimize loop order for ILP

05
Microkernels!

06
SIMD Microkernels

07
Software prefetching

08
Write inline assembly to 
take advantage of 
embedded broadcast

Optimizations for Single Core GEMM
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Sorted roughly by difficulty. DO NOT need to do all of them, don’t have to follow this order, can try ANY other technique. 
These are just some ideas; do what you can.



Meet the Processor: Intel Xeon Phi
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Two Adjacent Cores

Our model: “Knights Landing”

*Not every core is enabled (any guesses why?)



Meet the Processor: Intel Xeon Phi
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• 68 cores per node (but you will only use 1)

• Each core:
– Runs at 1.4 GHz
– Supports AVX512 vector operations that operate on 8 double

precision floats with one instruction
– Two vector lanes (can process 2 vector instructions simultaneously)
– Maximum Possible Throughput (FMADD -> 2 FLOPS)

1.4 × 109
instructions

lane ⋅ 𝑠𝑠
× 16

FLOP
instruction

× 2 lanes = 44.8 GFLOPs

– Can we hit the peak? Nope – processor is starved by memory 
bandwidth. USE THE CACHES / REGISTERS!
• L2 Cache: 1 MB
• L1 Data Cache: 32 KB
• Registers: 32 AVX512 vector registers holding 8 doubles each

Each PU is a hyperthread;
you can ignore this.



Idea 1: Single Level of Blocking
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• Break the large problem into a series of smaller matrix multiplications (multiplication of 𝑚𝑚 ×
𝑘𝑘, 𝑘𝑘 × 𝑛𝑛 blocks). See the lecture slides for why this helps cache efficiency.

• Choose a cache level to target (L2, L1) and compute the total number of data words 𝐶𝐶 that it
can hold. May want to use a value of 𝐶𝐶 lower than the theoretical maximum.

• Choose block tiling parameters m,𝑛𝑛, 𝑘𝑘 such that
𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚 + 𝑘𝑘𝑘𝑘 ≤ 𝐶𝐶

• Code already provided in the starter. You should search over different tile shapes, report
findings. Starter code will not achieve high performance without further modification.

𝑚𝑚

𝑛𝑛

𝑚𝑚

𝑘𝑘

𝑘𝑘

𝑛𝑛



Starter Code
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void square_dgemm(int lda, double* A, double* B, double* C) {

// For each block-row of A

for (int i = 0; i < lda; i += BLOCK_SIZE) {

// For each block-column of B

for (int j = 0; j < lda; j += BLOCK_SIZE) {

// Accumulate block dgemms into block of C

for (int k = 0; k < lda; k += BLOCK_SIZE) {

int M = min(BLOCK_SIZE, lda - i);

int N = min(BLOCK_SIZE, lda - j);

int K = min(BLOCK_SIZE, lda - k);

// Perform individual block dgemm

do_block(lda, M, N, K, 

A + i + k * lda, 

B + k + j * lda, 

C + i + j * lda);

}

}

}

}

static void do_block(int lda, int M, int N, int K, double* A, 

double* B, double* C) {

// For each row i of A

for (int i = 0; i < M; ++i) {

// For each column j of B

for (int j = 0; j < N; ++j) {

// Compute C(i,j)

double cij = C[i + j * lda];

for (int k = 0; k < K; ++k) {

cij += A[i + k * lda] * B[k + j * lda];

}

C[i + j * lda] = cij;

}

}

}



Idea 2: Multiple Levels of Blocking
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• Recurse! Perform additional nested levels of blocking. Use the starter code for an example. If
you targeted L2 for the first level, target either L1 or registers for the second level. Benchmark
and make graphs for different tile shapes, etc.

• Same nesting order of three loops may not be optimal for all three layers! Try changing it
(three nested loops remain correct in any order; read GotoBLAS paper for optimality of orders)

• A subprocedure for GEMM that is blocked for registers is typically called a micro-kernel



Idea 3: Repack and Realign Your Matrices
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• Assume that you aren’t doing any blocking and you’re calling the naïve GEMM code. Each dot 
product requires a row of A, column of B.

• Accesses to each element of A are separated by n words in memory; not contiguous.

• Non-contiguous memory accesses can’t take advantage of hardware prefetching, run slower.

Not contiguous 
in memory.



Idea 3: Repack and Realign Your Matrices
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• Solution for the naïve code: copy over A to a new
memory location and repack so that it’s in row-major
order before you perform the matrix multiplication.

• Introduces overhead of copy + reorganize. But these
cost 𝑂𝑂(𝑛𝑛2) time while matrix multiplication is 𝑂𝑂(𝑛𝑛3), so
benefits outweigh costs if done correctly.

• Depending on loop order, may want to repack matrix B
in column-major; tailor repacking to your algorithm.

• With blocking: same logic but could keep elements
within each block contiguous.

Blocked column-major
orderings.



Idea 3: Repack and Realign Your Matrices
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• When you copy over matrices to repack, good idea to align them to the cache boundary. 
May yield a fractional speedup.

• What does that mean? When you call malloc, the beginning of your new block of memory is 
some arbitrary location.

• Basic units in a cache: blocks or lines. Small group of adjacent memory locations. Each line 
is 64 bytes on KNL. Line boundaries are always multiples of 8 double words.
– Unaligned: Start of block is not a multiple of 8
– Aligned: Start of block is a multiple of 8

Unaligned

Aligned

Cache Boundary



Idea 3: Repack and Realign Your Matrices
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• Why might you want your new memory block aligned? Certain low-level machine instructions 
(e.g. SIMD instructions) work on contiguous segments of 8 double words in memory. 

• They run faster if you guarantee that the start of the segment is aligned with a cache 
boundary (i.e. either all elements are in the cache, or all need to be loaded in, nothing 
“partial”)

• How to do it? When copying, instead of malloc, call _mm_malloc(<bytes you want>, 64)
to align to 64-byte boundary. To get the function, need to #include <immintrin.h>

Unaligned

Aligned

Cache Boundary



Idea 3: Repack and Realign Your Matrices
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• Getting the formula right for blocking + repacking can be difficult. It’s worth spending some 
time to work it out. Even harder with multiple nested levels; may want to write a recursive 
“pack” procedure.

• Advanced: copy and pack “on-the-fly” into a memory region sized according to the cache, not 
the entire input matrix; produces a memory-efficient implementation if you choose the loop 
order to avoid 𝑂𝑂(𝑛𝑛3) work.

• Packing so that elements accessed contiguously are contiguous in memory can also help you 
avoid translation lookaside buffer misses (page faults)
– Processor can “hide” cache misses via instruction-level parallelism…
– … but a TLB miss causes the entire pipeline to stall while the CPU fetches the correct page



Examples of Multilevel Blocking + Repacking
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• From “Anatomy of High-Performance
Matrix Multiplication”, linked on the
assignment page

• Paper has more details on why each
choice is desirable

• Several levels of blocking here: L2, L1,
registers (micro-kernel)



Pause

Questions so far? Tips get slightly more difficult from here.
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Idea 4: Optimize your Loop Order
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• So far: we’ve interpreted matrix
multiplication as computing a “collection of
dot products”. Here is an alternate
interpretation:

Matrix C is the sum of K outer products 
between columns of A and rows of B

• What does this mean in practice? For our
naïve GEMM, just change the loop order

• Does this help? Somewhat… why are we
doing this?

void simpleGEMM(...) {

// Assume output matrix is 0

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

for(int k = 0; k < n; k++) {

C[i + j * n] += A[i + k * n] * B[k + j * n];

...

void simpleGEMMReordered(...) {

// Assume output matrix is 0

for(int k = 0; k < n; k++) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {  

C[i + j * n] += A[i + k * n] * B[k + j * n];

...



Idea 4: Optimize your Loop Order
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• Answer: We want to maximize instruction-
level parallelism – especially if you write an
optimized micro-kernel

• What is instruction-level parallelism? When
we write code, we imagine statements
execute one after the other

• The processor, on the other hand, is smart
enough to realize that some instructions can
be executed out of order without affecting
correctness. It can schedule these
operations to run concurrently

int *a, *b, *c, *x, *y, *z;

...

*x = *a + *b;

*y = *b + *c;

*z = *a + *c;

...

1

2

3

Program Order

Processor
May Execute

Concurrently (!)



Idea 4: Optimize your Loop Order
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• ILP can dramatically speed up 
performance
– If an operation stalls on a cache miss, 

processor can continue execution until 
that memory load completes

– KNL has two vector processing lanes; 
ILP keeps both busy.

• On the other hand, some programs impede 
ILP and out-of-order execution.

int *a, *b, *c, *x, *y, *z;

...

*x = *a + *b;

*y = *b + *c;

*z = *a + *c; 

...

1

2

3

Program Order

Processor
May Execute

Concurrently (!)

Dependencies force the processor to 
execute operations in sequence

int *a, *b, *c, *x, *y, *z;

...

*x = *a + *b;

*y = (*x) * (*x);

*y += *c; 

...

1

2

3

1

2

3

Program Order Execution 
Order



Idea 4: Optimize your Loop Order
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• Back to our example: in the original code,
we cannot take advantage of ILP in the
k-loop, since we are constantly
overwriting C[i + j * n].

• In the reordered code, each iteration of
the inner two loops writes to a distinct
location C[i + j * n], so processor
could potentially schedule them in parallel

• BUT: to really see the benefits of ILP, you
should replace the inner loops with a
sequence of explicit instructions. This is
our next topic.

void simpleGEMM(...) {

// Assume output matrix is 0

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

for(int k = 0; k < n; k++) {

C[i + j * n] += A[i + k * n] * B[k + j * n];

...

void simpleGEMMReordered(...) {

// Assume output matrix is 0

for(int k = 0; k < n; k++) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {  

C[i + j * n] += A[i + k * n] * B[k + j * n];

...



Idea 5: Write a Micro-Kernel
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• In the previous slide, we reordered our loops so that the processor could take advantage of
instruction-level parallelism…

• But every multiply-and-add operation (also called fused multiply-add, or FMA) is followed by
at least a loop counter increment: j++, in this case.

• This is an annoying. Processor also needs to keep checking whether the loop bounds have
been exceeded, which is an expensive branch even if the branch predictor is good. Also
impedes instruction-level parallelism (branch complicates instruction flow)

• What is a micro-kernel for GEMM? Performs matrix multiplication where at least one of the
three input matrices is very small and fits into the processor registers. A micro-kernel usually
contains long sequences of instructions.



Silly Micro-Kernel Example for Vector Addition
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• To avoid giving away too much homework solution, lets look at a micro-kernel for another 
problem: vector addition. Given two n-length vectors stored in *A, *B, compute their 
elementwise sum and store it in *C. Here’s the naïve code:

• Writing a micro-kernel will probably not speed up the naïve code for vector addition (why?), 
but it will give you an example you can heavily adapt for GEMM

• A good micro-kernel (with SIMD, which we will discuss shortly) can easily get you 
performance in the upper-end of the performance target window

void addVecs(double *A, double *B, double *C, int n) {

for(int i = 0; i < n; i++) {

C[i] = A[i] + B[i];

}

}



Silly Micro-Kernel Example for Vector Addition
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• Our toy micro-kernel will add together
vectors of length 8.

• For those of you familiar with #pragma
unroll, this is like manual loop unrolling

• Assume for now that n is divisible by 8 (if
not, tack on an extra loop to the end to
handle the tail, or pad the input with
zeros)

• Let’s rewrite the code so that we can call
our micro-kernel easily:

void addVecs(double *A, double *B, double *C, int n) {

for(int i = 0; i < n; i += 8) {

double* aLoc = &(A[i]);

double* bLoc = &(B[i]);

double* cLoc = &(C[i]);

for(int j = 0; j < 8; j++) {

cLoc[j] = aLoc[j] + bLoc[j];

}

}

}

Our micro-kernel will 
do this!



Silly Micro-Kernel Example for Vector Addition
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• Our toy micro-kernel will add together
vectors of length 8.

• For those of you familiar with #pragma
unroll, this is like manual loop unrolling

• Assume for now that n is divisible by 8 (if
not, tack on an extra loop to the end to
handle the tail, or pad the input with
zeros)

• Let’s rewrite the code so that we can call
our micro-kernel easily:

void addVecs(double *A, double *B, double *C, int n) {

for(int i = 0; i < n; i += 8) {

double* aLoc = &(A[i]);

double* bLoc = &(B[i]);

double* cLoc = &(C[i]);

micro_kernel(aLoc, bLoc, cLoc);

}

}



Silly Micro-Kernel Example for Vector Addition
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• Microkernel flow:
– Declare register variables
– Load inputs from memory
– Compute
– Store output registers to memory

• The code to the right ignores the fact that
we only have 16 registers in x86-64
available to us, so not the most efficient

– Not all local variables will persist in
registers, compiler will optimize

– SIMD (coming up) will fix this

void micro_kernel (double* A, double* B, double* C) {

// Declare

double A0, A1, A2, A3, A4, A5, A6, A7;

double B0, B1, B2, B3, B4, B5, B6, B7;

double C0, C1, C2, C3, C4, C5, C6, C7;

// Load

A0 = A[0]; ... ; A7 = A[7];

B0 = B[0]; ... ; B7 = B[7];

// Compute

C0 = A0 + B0; ...; C7 = A7 + B7;

// Store

C[0] = C0; ... ; C[7] = C7;

}



Silly Micro-Kernel Example for Vector Addition
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• What does this buy us?
– Only need to increment loop counter 

every 8 iterations
– Lots of arithmetic operations right next 

to each other, good ILP

• This example is terrible, though… no 
need to load A and B to registers with 
explicit code, since they are only used 
once, and the compiler does it anyway

• But for GEMM, we reuse A, B, C several
times in the compute step. Explicit loads / 
stores promote register reuse

void micro_kernel (double* A, double* B, double* C) {

// Declare

double A0, A1, A2, A3, A4, A5, A6, A7;

double B0, B1, B2, B3, B4, B5, B6, B7;

double C0, C1, C2, C3, C4, C5, C6, C7;

// Load

A0 = A[0]; ... ; A7 = A[7];

B0 = B[0]; ... ; B7 = B[7];

// Compute

C0 = A0 + B0; ...; C7 = A7 + B7;

// Store

C[0] = C0; ... ; C[7] = C7;

}

This sequence is 
WAY longer for 

GEMM!



Micro-Kernel Tips
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• You’re going to write a lot of repetitive code. Use Python or tool of your choice to auto-
generate C code for several matrix sizes (e.g. 2 x 2, 4 x 4, 8 x 8 GEMMs)

• Personal favorite: Cog (https://nedbatchelder.com/code/cog. Extremely simple. Uses Python, 
can install on Cori with pip install cogapp --user). You can do things like this inline in a 
source file, call cog –r <myfile> to generate the output. Read the documentation for more.

https://nedbatchelder.com/code/cog


Micro-Kernel Tips

Optimizing Single Core GEMM | CS267 31

• You should use the Compiler Explorer (https://godbolt.org/) to check out the Assembly that
your compiled function is producing. Here is what it does for our vector addition micro-kernel:

https://godbolt.org/


Pause
Questions? We’ll be covering Single-Instruction-Multiple Data instructions next, which are 

potentially very useful to speed up performance.
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Idea 6: SIMD Micro-Kernel
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• SIMD: Single Instruction Multiple Data. Issue one instruction to perform several arithmetic
operations. Available to you: 512-bit Intel Advanced Vector eXtensions (AVX512) intrinsics

• In theory, the compiler can look at loops and generate vectorized code itself. But GEMM is
complicated enough that you’ll probably have to do it yourself. Serious performance boost if
you do it right



A Crash Course in AVX512
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• AVX512 intrinsics are “functions” that can operate on vector registers. Each KNL core has 32 
vector registers at its disposal. 

• Intrinsics don’t have overhead of actual function calls. They are just nice wrappers for low-
level Assembly commands (i.e. 1 intrinsic line = 1 assembly instruction)

• Each register is 512 bits wide, fits 8 double-precision 64-bit floats.

• The HW1 CMakeLists.txt is set up so that most (but not all) AVX512 intrinsics become 
available to you by writing 

#include <immintrin.h>



Silly Micro-Kernel Revisited with AVX512
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• Let’s rewrite our toy micro-kernel using
AVX512. Don’t expect a speedup for vector
addition, though (we are bandwidth-bound).

• First step: let’s replace our local variables
with vectors.

• Vector datatypes are prefixed with __m512
and followed by either:
– <nothing>: If the vector contains 16 single precision

floating point numbers
– d: If the vector contains 8 double precision floating

point numbers
– i: If the vector contains integers (any precision)

void micro_kernel (double* A, double* B, double* C) {

// Declare

double A0, A1, A2, A3, A4, A5, A6, A7;

double B0, B1, B2, B3, B4, B5, B6, B7;

double C0, C1, C2, C3, C4, C5, C6, C7;

// Load

A0 = A[0]; ... ; A7 = A[7];

B0 = B[0]; ... ; B7 = B[7];

// Compute

C0 = A0 + B0; ...; C7 = A7 + B7;

// Store

C[0] = C0; ... ; C[7] = C7;

}



Silly Micro-Kernel Revisited with AVX512
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• Let’s rewrite our toy micro-kernel using 
AVX512. Don’t expect a speedup for vector 
addition, though (we are bandwidth-bound).

• First step: let’s replace our local variables 
with vectors.

• Vector datatypes are prefixed with __m512 
and followed by either:
– <nothing>: If the vector contains 16 single precision 

floating point numbers
– d: If the vector contains 8 double precision floating 

point numbers
– i: If the vector contains integers (any precision)

void micro_kernel (double* A, double* B, double* C) {

// Declare

__m512d Ar;

__m512d Br;

__m512d Cr;

// Load

A0 = A[0]; ... ; A7 = A[7];

B0 = B[0]; ... ; B7 = B[7];

// Compute

C0 = A0 + B0; ...; C7 = A7 + B7;

// Store

C[0] = C0; ... ; C[7] = C7;

}



Silly Micro-Kernel Revisited with AVX512
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• Second step: load input registers with 
data. 

• We will use the double-precision load
intrinsic:

__m512d _mm512_load_pd (void const* mem_addr)

• Input: Pointer to an aligned, contiguous 
segment of 8 doubles in memory

• Returns: A vector of 8 doubles

• Again: not a real function call, just looks 
like one

void micro_kernel (double* A, double* B, double* C) {

// Declare

__m512d Ar;

__m512d Br;

__m512d Cr;

// Load

Ar = _mm512_load_pd(A);

Br = _mm512_load_pd(B);

// Compute

C0 = A0 + B0; ...; C7 = A7 + B7;

// Store

C[0] = C0; ... ; C[7] = C7;

}



How to Read an Intrinsic Signature
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• Signature looks like garbage at first, but each part has meaning

__m512d _mm512_load_pd(void const *addr)

This 
intrinsic 
returns a 
vector of 8 
doubles

I want to load
some aligned
data from memory 
into a vector (use 
unaligned version 
otherwise)

This is 
an 
AVX512 
intrinsic 
(not 
AVX2)

My data is 
stored in 
double 
precision

Here’s a 
pointer to 
the first of 
8 data 
words in 
memory



Silly Micro-Kernel Revisited with AVX512
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• Third step: perform computation

• The double precision vector add 
instruction:
__m512d _mm512_add_pd (__m512d a, __m512d b)

– Inputs: Two vectors with 8 doubles each
– Returns: A vector of 8 doubles with elementwise 

sums

void micro_kernel (double* A, double* B, double* C) {

// Declare

__m512d Ar;

__m512d Br;

__m512d Cr;

// Load

Ar = _mm512_load_pd(A);

Br = _mm512_load_pd(B);

// Compute

Cr = _mm512_add_pd(Ar, Br);

// Store

C[0] = C0; ... ; C[7] = C7;

}



Silly Micro-Kernel Revisited with AVX512
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• Fourth step: store back the output

• The double precision vector store 
instruction:
void _mm512_store_pd (void* addr, __m512d a)

– Inputs: Pointer to aligned memory location and a 
vector of 8 doubles

– Postcondition: Store operation executed

void micro_kernel (double* A, double* B, double* C) {

// Declare

__m512d Ar;

__m512d Br;

__m512d Cr;

// Load

Ar = _mm512_load_pd(A);

Br = _mm512_load_pd(B);

// Compute

Cr = _mm512_add_pd(Ar, Br);

// Store

_mm512_store_pd(C, Cr);

}



Where to Look Up Intrinsic Signatures
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• Intel Intrinsics Explorer (https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html). Let’s you look up intrinsics, filter by type, etc. Super useful for this
assignment.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


SIMD Micro-Kernel Tips for GEMM
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• Worth your time. You’ll need the set1_pd, fmadd_pd intrinsics, at least, in addition to the
ones we’ve already covered. Try different micro-kernel shapes (8 x 8, 16 x 16, etc.)

• Remember the reordered GEMM code? Imagine what would happen if you wrote out all the
statements in the inner i, j loops one after the other for small (e.g. 8 x 8, 16 x 16) matrices.
Can you concisely express that sequence of ops with AVX512? Python code generator still
helpful.

void simpleGEMMReordered(...) {

// Assume output matrix is 0

for(int k = 0; k < n; k++) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {  

C[i + j * n] += A[i + k * n] * B[k + j * n];

...



Pause
Phew – almost there. Don’t worry if you can’t get to these last optimizations – although they can 

yield a significant speedup if you do them right.
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Idea 7: Software Prefetching
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• Prefetching brings memory into the cache before an instruction explicitly requests it. A few
judicious software prefetch commands boosts GEMM by 5-10%. Pretty good on KNL!

• Check out the _mm_prefetch intrinsic:
– Fetches a line at the given memory location into the cache level suggested by the hint
– Fun fact: Don’t have to worry about providing bad memory locations! Illegal / out-of-bounds

prefetches are silently ignored (you are suggesting to the processor, not commanding it).

• Warnings:
– Prefetching has little to no benefit if you are compute-bound or if your blocking is not

optimal. Treat as icing on the cake.
– Too many prefetch instructions will slow your code down
– Useless if you don’t search for the optimal prefetch distance (see the next slide)



Another Silly Example: Prefetching for Vector Addition
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#define PFETCH_DIST 48

void addVecs(double *A, double *B, double *C, int n) {

for(int i = 0; i < n; i += 8) {

double* aLoc = &(A[i]);

double* bLoc = &(B[i]);

double* cLoc = &(C[i]);

_mm_prefetch(aLoc + PFETCH_DIST, _MM_HINT_T0);

_mm_prefetch(bLoc + PFETCH_DIST, _MM_HINT_T0);

micro_kernel(aLoc, bLoc, cLoc);

}

}

• Probably won’t result in a speedup for
vector addition – but a similar approach
WILL yield a speedup for GEMM.

• At each iteration, we prefetch a line of 8
elements containing location A[i + 48]
into the L1 cache (that’s what the locality
hint _MM_HINT… means. Check out this
page for all hints). Similar for B.

• Don’t need to write an optimized micro-
kernel to try prefetching, but more likely
to see a benefit if you have

https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints


Tuning the Prefetch Distance
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• Key parameter is prefetch distance: how far in advance do you want to bring in the cache 
line?

• Prefetch distance too small: Data won’t be available by the time you need it

• Prefetch distance too large: Data might be evicted from cache by the time you need it, clogs 
up the instruction stream

• There is a sweet spot where you get optimal performance, but you’ll need to perform a line 
search to find it.

– Exhaustive search probably better than binary search, which could get stuck in local minima



Idea 8: Write Inline Assembly
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• If you’ve gotten this far, you may have realized that matrix multiplication depends on two
AVX512 intrinsics:
– _mm512_fmadd_pd
– _mm512_set1_pd. This is called a broadcast intrinsic

• GCC 8.3 has a major flaw: it does not support “embedded broadcast”, which fuses these
operations in assembly. This causes a computation bottleneck: best you can hope for is 22.4
GFLOPs, even if you do everything else right!



Idea 8: Write Inline Assembly
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• The only way to fix this: write the correct inline assembly yourself (i.e. replace the intrinsics)

• WARNING: You need to make sure your implementation is correct when it compiles on our
end! You’re on your own here. To get started, read:
– https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

• DO NOT do this until you have written the code with AVX512 intrinsics! Inline assembly will
be a drop-in substitute. Write intrinsics, then replace with inline ASM as icing on the cake.

Intensity (FLOPS/byte)

Throughput (GFLOPs)

44.8 GFLOPs

22.4 GFLOPs

Theoretical Peak

Without Embedded Broadcast

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html


Silly Micro-Kernel Revisited with Inline Assembly
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• Let’s rewrite the silly micro-kernel one last
time, but we’re going to replace the intrinsic
with inline ASM

• We will NOT get a speedup here; intrinsics are
just as good as inline ASM in almost every
case, and usually even better.

• The embedded broadcast bug that we’re trying
to solve has been fixed in later versions of
GCC.

• Writing inline ASM is a useful skill to have in
your kit, though… so if you want a challenge,
here’s how.

void micro_kernel (double* A, double* B, double* C) {

// Declare

__m512d Ar;

__m512d Br;

__m512d Cr;

// Load

Ar = _mm512_load_pd(A);

Br = _mm512_load_pd(B);

// Compute

Cr = _mm512_add_pd(Ar, Br);

// Store

_mm512_store_pd(C, Cr);

}



Silly Micro-Kernel Revisited with Inline Assembly
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void micro_kernel (double *A, double *B, double *C) {

__m512d Ar, Br, Cr;

asm volatile (

"vmovapd (%[A]), %[Ar]\n\t"        // Load A

"vmovapd (%[B]), %[Br]\n\t"        // Load B

"vaddpd %[Ar], %[Br], %[Cr]\n\t"   // Add

"vmovapd %[Cr], (%[C])\n\t"     // Store C

: [Cr] "+v" (Cr),

[Ar] "+v" (Ar),

[Br] "+v" (Br)

: [A] "r" (A),

[B] "r" (B),

[C] "r" (C)

: "memory"

);

}

• Aligned load and store operations done by vmovapd
• Load: provide memory location, then register
• Store: provide register, then memory location

• Addition performed by vaddpd ; supply two inputs
followed by output

• First colon, then a list of symbol definitions and
constraints for output / input registers
– “+v” denotes a read / write AVX512 vector register

• Second colon, then a list of input registers
– “r” denotes a RO standard x86-64 register

• Third colon: memory clobber (important!)
– Tells the compiler we’re reading / writing memory,

make sure no values cached in registers before



Some Tips for Inline ASM
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• Test your code thoroughly. For example, not including the memory clobber causes some ASM
code to work correctly at O1, but not at O3.

• Try to include as many ASM statements in one block as possible. Entering an ASM block is
expensive (compiler needs to commit any registers that cache memory, etc.)

• Code generation is the way to go here. Don’t bother typing everything out.



GEMM in Practice (Stolen from Jim)
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• High performance matrix multiplication code uses all the techniques discussed

• A short history of the technique:
– PHiPAC (Portable High Performance ANSI C) was one of the earliest projects in this area

(done at Berkeley), for tuning matrix multiplication. 1997 conference paper recently won a
Test-of-Time award.

– ATLAS (Automatically Tuned Linear Algebra Software) is another project that started about
the same time, aimed at tuning all the BLAS, and is ongoing, and also won a Test-of-Time
award.

– BLIS and OpenBLAS are two more recent and ongoing projects.
– OSKI (Optimized Sparse Kernel Interface) autotunes SpMV (sparse matrix times dense

vector multiplication), in part by choosing an optimal sparse data structure for each sparse
matrix. POSKI is a parallel version.



Good luck! Break the record!

There are some extra slides after this one. You might want to look at them.
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Extra Idea: Dealing with Powers of Two
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• This one is simpler than the ones that came 
before it. Let’s go back to that performance 
graph at the beginning of the presentation. 
Any ideas what’s going on here?

• At least one good way to fix this mentioned 
earlier in the presentation

• Performance dip unavoidable, but you can 
mitigate it to boost average performance by
1-2% on the homework benchmark.

Naïve
GSI
MKL



More on Why Loop Order Optimization is Good
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• Recall: we have 32 vector registers available to us. For now, let’s assume that matrix
dimensions are so small that all of one matrix + 2 rows / columns will fit into registers

• Let’s think about how a (very, very intelligent) compiler would generate instructions for the
original GEMM code:

void simpleGEMM(...) {

// Assume output matrix is 0

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

for(int k = 0; k < n; k++) {

C[i + j * n] += A[i + k * n] * B[k + j * n];

...

Compiler

simpleGemm:

BREGS <- LOAD ALL OF B FROM MEMORY

LOOP i:

CREG <- LOAD ROW i OF C FROM MEMORY

AREG <- LOAD ROW i OF A FROM MEMORY

LOOP j:

LOOP k:

FMADD INSTRUCTION

CREG -> STORE ROW i of C TO MEMORYSTORE inside i loop



More on Why Loop Order Optimization is Good
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• How about the reordered GEMM code?

• We just got a STORE operation out of the loop – good news!

simpleGemm:

CREGS <- LOAD ALL OF C FROM MEMORY

LOOP k:

AREG <- LOAD COL k OF A FROM MEMORY

AREG <- LOAD ROW k OF B FROM MEMORY

LOOP i:

LOOP j:

FMADD INSTRUCTION

CREGS -> STORE ALL OF C TO MEMORY

void simpleGEMMReordered(...) {

// Assume output matrix is 0

for(int k = 0; k < n; k++) {

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {  

C[i + j * n] += A[i + k * n] * B[k + j * n];

...

Compiler

Outside the loop!
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