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Sparse Tensors, Multilinear Maps, and Me
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About me: computer science PhD student at UC Berkeley.

Interests: sparse linear algebra, multilinear maps and 

tensor kernels to accelerate scientific / ML workloads.

Some past projects:

- Algorithms for high-dimensional “tensor SVD”.

- Scaling bulk-synchronous linear algebra on large clusters.

- Distributed-memory graph algorithms.

 AM NOT: A chemist, computational or otherwise. 



My Flight to the 2024 CSGF Program Review
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We study MLIAPs 

for chemical 

simulation!

so which atom is 

your favorite

Tristan Maxson (CSGF Y3) generously 

spent hours telling me about machine 

learning interatomic potentials.



Interatomic Potentials via Graph Neural Networks
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Atom metadata and positions Deep Graph Neural Network System Energy and Forces

363 mEV

Goal: Use a message-passing graph neural network to predict atomic energies and forces.

Constraint: Want our network to respect certain physical laws (e.g., symmetry, energy conservation).



Respecting Physical Symmetries

Engineering Fast Kernels for Rotation-Equivariant Chemical Foundation Models | BERKELEY LAB 5

• Message-passing GNNs generate feature 

vectors for each node and edge.

• O(3)-Equivariance: If input coordinate 

system rotates, the output energy stays the 

same and the predicted forces 

rotate compatibly.

• Need to combine node / edge features in a 

highly-structured, prescriptive manner.



The Clebsch-Gordon Tensor Product
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Structure of the sparse tensor is 

known when GNN is initialized.

Typically, need to execute 

millions of these operations.

Problem: GPUs are optimized for 

dense GEMM!

CG tensor product can run at 

<10% GPU utilization, consumes 

>80% of model runtime.



Some Large Equivariant Neural Network Projects 
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We simulated 

an HIV capsid 

on 5120 GPUs.

Albert Musaelian (alum’23) and 

colleagues nominated for the 

2023 Gordon Bell prize.Samuel Blau (alum ’16) & others

Bowen Jing (Y4) & others



OpenEquivariance: Turbocharging CG Performance
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NVIDIA GPUs

CUDA Kernels

NVRTC

Computation Scheduler / Python Interface 

Numpy PyTorch

C++ JIT Adapter

HIPRTC

HIP Kernels

AMD GPUs

• We present OpenEquivariance: an open-source 

GPU kernel generator for the CG tensor product

• OOM speedup over best open-source codes, 

on-par w/ NVIDIA’s closed-source package 

(but 2x speedup against their earlier version!)

• 5-6x speedup for MACE / Nequip, 10x+ smaller 

memory footprint. 76 Github stars and counting!

Me* Austin 

Glover*

Aydın

Buluç
James 

Demmel

*=equal effort



Subkernels of the CG Tensor Product
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• Break the computation into segments, 

one for each nonzero block. 

• Each segment contracts 𝒙, 𝒚 with a block, 

matrix-multiplies result by tile from 𝑾.



A Roadmap to Efficient CG Kernels
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Forward Pass Warp-Level Algorithm
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Backward calculation is similar, 

but requires three update 

equations instead of one. 



Optimizing Model Force Predictions
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• The derivative of the predicted energy 𝐸(𝑹,𝑾) w.r.t. atomic positions 𝑹 yields atomic forces.

• To minimize the difference between predicted forces and a ground truth, we need a second 

partial derivative of energy:



Novel Identities for Second Partial Derivatives
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• PyTorch is happy to calculate a second partial derivative… if you supply a “double-backward” 

pass for the CG tensor product. 

• Key: No additional kernel engineering required! Double-backward can be expressed as a 

linear combination of forward / backward calls.



Graph Convolution with Kernel Fusion
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• Graph convolution has a well-studied 

SpMM memory access pattern.

• Fuse both CG tensor product and graph 

convolution to save compute AND memory!



Experiments on DOE Flagship Systems
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NERSC Perlmutter, A100 GPUs OLCF Frontier, MI250x GPUs



A100 Tensor Product Throughput
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Benchmarks conducted with cuE v0.4.0



Cross-Platform Performance and Roofline Analysis
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MACE-large isolated tensor product runtime (ms), 

batch size 50K FP32 unfused.



Accelerating MACE (Lawrence Berkeley Lab)
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*Santiago Vargas (alum’24) 

rented my Berkeley room in 

2022 for his practicum.

I need contacts at 

LBNL for MACE 

developers!
Say less



Conclusions and Further Work

Engineering Fast Kernels for Rotation-Equivariant Chemical Foundation Models | BERKELEY LAB 19

• OpenEquivariance is now officially integrated 

into Nequip and MACE.

• 5-6x E2E speedup, OOM memory reduction via:

o Synchronization-light parallelization strategies.

o Careful management of GPU shared memory.

o Register caching / loop unrolling.

o Kernel fusion, and more!

• Tentative future work: numerical precision tuning, 

JAX wrappers, AMD performance tuning.

pip install openequivariance



The Real Atoms were the Friends Along the Way 🥹
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(that doesn’t scan) Thank you Lindsey, Kris, Michelle, Robyn, and the entire Krell staff! 



Questions?

 Scan the code for the package and paper.
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