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Multilinear Algebra in the Exascale Era =

more.
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® Linear algebra drives progress in scientific computing and machine learning.
® LLNL El Capitan: 1.7 x 10'® FP64 FLOPs on LINPACK, more in lower precision.

® Growing number of applications rely on multilinear algebra: much less studied /
optimized. Let’s survey three such applications.
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Symmetry-Preserving Chemistry Models )

® Scientists today can use neural
networks to quickly approximate atomic
forces, predict properties of molecular
systems.

® State-of-art models even bake physical
laws, like symmetry, into network
structure.

® Accurate, high throughput simulation
could revolutionize material discovery
and drug design.

Figure: Perovskite crystal visualized with x3dase.
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Multidimensional Network Analysis =
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® Consider alarge, sparse array containing, e.g., e-commerce review data, Reddit word
usage, etc.

® \We have mathematical tools to cluster / analyze quantities of interest using only the
location and values of nonzero elements by generalizing matrix PCA.
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Inverse Problems and Tomography =

We can image interior of biological tissue by applying weak currents, measuring voltages on a
boundary, solving linear least-squares problems [Che+20].

Figure: EIT demo on orange (CC2.0 Wikimedia, John Cummings).
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Multilinear Maps: The Common Pattern

Efficient Multilinear Map / MTTKRP

Applications

Z; = ZAjquuini
U,
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Warm-up: Linear Maps et
® Consider f : R — R™ satisfying
flax) = of (x) fl+y) =flx)+ fy)

What linear algebraic primitive lets us evaluate such maps efficiently?

® Answer: Matrix-vector multiply for one input, matrix-matrix multiply enables high
performance for multiple inputs: f(X) = AX, A € R™*",
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Multilinear Maps and the MTTKRP =

Consider a multilinear function

H H ! ° f(x,y). What fundamental kernels

allow efficient evaluation?

Z,=A X;®Y,)
Y| Yo Y . .
Zji = Y AjwXu Y ® Answer: matrix-vector multiply by a

Kronecker product:
HH - fl@,y)= Az @ y), A e RV,
J matrix-matrix multiplication by a
ff Khatri-Rao product for a batch:

fF(X,)Y)=AX0Y).

E
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Challenges and Opportunities ’A\m

Extreme tensor
sparsity

@

Large intermediate
quantities

Difficult theory and
implementation

s 2\
v T e

/

® Sparse tensors (e.g. Reddit-2015 [Smi+17])
exhibit nonzero fraction as low as 4 x 10~19;
curse of dimensionality.

® Kronecker product height is exponential in
input dimension; costly to materialize.

® Existing algorithms / software target matrices,
not tensors.

We accelerate the multilinear map in two important applications, offering OOM speedups
via kernel engineering and asymptotically faster approximation algorithms.
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Research Papers Covered Today =

In this talk, we explore multiple methods to accelerate the batched multilinear map:

1. Optimizing Chemistry Foundation Models: An Efficient Sparse Kernel Generator for
0(3)-Equivariant Deep Networks. ACDA [Bha+25].

2. Accelerated Randomized Tensor Decomposition: Fast Exact Leverage Score Sampling
from Khatri-Rao Products. NeurlPS [Bha+23].

3. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. SPAA
[Bha+24a].

4. Efficient Leverage Score Sampling for Tensor Trains. NeurlPS [Bha+24b].

5. Distributed-Memory Sparse Kernels for Machine Learning. IPDPS [BBD22].
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Part 1: Clebsch-Gordon Tensor Products

rrrrrr ﬂ




Geometric Deep Learning in Atomic Simulation =

Atom metadata and positions Deep Graph Neural Network System Energy and Forces

® Geometric deep learning achieves SOTA performance for fast interatomic potential
calculation. Key primitive is the message-passing graph neural network.

® |nput: atom metadata and positions. Output: system energy, atomic forces.

11/56



)

Respecting Physical Symmetries =

® \Message-passing GNNs generate messages
for each node and edge.

® (Q(3)-Equivariance: if the input coordinate
system rotates, the output energy stays the
same and the predicted forces rotate
compatibly.

® Need to combine node, edge featuresin a
highly structured, prescriptive manner.
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The Clebsch-Gordon Tensor Product
- A
= NS W “ . ﬁ
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z=W -P-(zoy)=W Y z[]ylj]P[ij]

i=1,j=1

Kernel typically executes on a large batch of (z,y, W) inputs (B ~ 105 — 107).
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Our Contributions [Bha+25] )

We introduce OpenEquivariance, a fast kernel generator for CG tensor products with up to 10x
speedup over the popular e3nn package, on par with NVIDIA cuE (joint work with Austin Glover).

Numpy PyTorch

® Exploits sparse structure in the multilinear map
tensor via JIT, register caching, loop unrolling. Computation Scheduler / Python Interface

C++ JIT Adapter

® Provides FlashAttention-style [Dao+22] backward

pass, novel identities for higher gradients.

NVRTC HIPRTC

® Fuses CG tensor product with graph convolution, CUDA Kemels
saving orders of magnitude of memory.

HIP Kernels

NVIDIA GPUs AMD GPUs
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Applications of OpenEquivariance =

ligand & DIFFDOCK ranked poses &
protein confidence score

®
&
@

NequlP 2

(a) Nequip [Bat+22] (b) DiffDock [Cor+23] (c) MACE-MPO [Bat+24]

15/56



)

Subkernels of the CG Tensor Product /\lﬂ

® Many nonzero blocks repeated in

Matrix-multipl;
the sparse tensor (known at o H by‘mem‘&yH -
. . — |7 =
model compile-time). o7

x]

® Qperation splits into many

P
o
smaller operations (subkernels) = - ! -
—_— |z |- oz
D — R
[ ]

—b—

t
b
1

o
—p—
N|= | S
3 — z :‘j |l Z

L=16,=106=1 L=2,6,=40=3 L=6,0,=8.0.=9

nonzero % = 0.22 nonzero % = 0.16 nonzero % = 0.08
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A Roadmap to Efficient CG Kernels

Assign each batch element to

distinct GPU warp

reeeec| |l

Schedule subkernels to
manage SMEM usage, avoid
memory traffic

Warp 1 H

Warp 2 H

Load subsegments of x, y, W into SMEM, reshape

Warp 3 '

Register-cache operands, use

JIT to emit optimized
instruction stream

Source
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Warp-Level Forward Algorithm

Algorithm Subkernel C Warp-Level Algorithm

Require: X € RV X(20e+1) o ¢ R(26y+1) W ¢ REXY
Require: Sparse tensor P = :y:¢=) for subkernel

fort =1...t/ do > Parallel over threads
Load @reg = X [t,:], Yreg = Y
Initialize zreg € RZ2+1 10 0.

for (i,4,k,v) € nz(PU-v:tz))do o Unroll via JIT
Zreg [K] += v - Treg [4] - Yreg [4]

Store Z' [t,:] = zreg, cOmpute Z +=W - Z'.

)

rrerere ﬂ

® Gradient calculation
(backward pass) is
similar, but requires 3
update equations
instead of 1.

18/56



)

Optimizing Model Force Predictions =

® The derivative of predicted energy E(R, W) w.r.t. atomic positions R yields atomic
forces. Want to solve

. . 2
H‘}‘lfl’lﬁ(R, W)= min | For (R, W) — Fy (R)|| 7

® To minimize difference between predicted forces and ground truth, need second partial
derivative of energy:

oL 7 O0Fp
W =2. vec(Fpr(R, W) - th(R)) oW
T O°E

= =2 vee(Fpu(R, W) = Fy(R)) ' 5o
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Novel Identities for Second Partial Derivatives ’A\m

® PyTorch gladly takes the second partial derivative... if you supply a “double-backward”
pass for the CG tensor product.

® Key: No additional kernel engineering required! Double-backward can be expressed as a
linear combination of forward / backward calls:

opl = backward(9L/0a,dL/0b,W ,g.)
op2 = backward(x,y,0L/0C,g.)

op3 =TP(0L/da,y, W)

op4 = backward(9L/0a,y, W ,g.)

opb = backward(x,dL/0b,W g.)

opb = TP (x,0L/0b, W)

op7 = TP(x,y,0L/0C)

OL/0x = opl [1] + op2 [1]

0L /0y = opl 2] 4+ op2[2]
OL/OW = op4 [3] + op5 [3]
0L/dg, = op3 + opb + op7
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Kernel Fusion

® Graph convolution has SpMM
memory access pattern

® Fuse both kernels to save
compute AND memory!

)

rrerere ﬂ

Algorithm Deterministic TP + Graph Convolution

Require: Graph G = (V, E), E [b] = (ip, jb)
Require: Batch z1,...,x|v |, y1, ..y g, W1, ..., W|g
for segment,; € schedule do
(s,t) = E[K][0], E[k] [1]
Set zacc =0
forb=1...|E| do
Execute segment subkernel sequence
Zacc += Zsmem
ifo=|E|ors < E[b+ 1] [0] then
if sis first vertex processed by warp then

> Parallel over Warps

Send z,c. to fixup buffer.
else
Store zacc to global memory.
Zace =0
Execute fixup kernel.
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Throughput (Unfused, A100)
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Cross-Platform Performance

)

rrerere ﬂ

GPU forward backward
e3nn cuE ours e3nn cukE ours
A100 13 28 2.0 21 3.5 37
A5000 29 42 3.8 42 93 N
MI250x 41 - 3.0 128 - 15

Table: MACE-large isolated tensor product runtime (ms), batch size 50K, FP32 unfused.
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Roofline Analysis

10! 4

100 4

Performance [TFLOP/s]
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Acceleration of MACE Foundation Model

Simulation Speed (MSteps / day)
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Takeaways e

® OpenEquivariance achieves SOTA performance, provides 5-6x end-to-end speedup for
Nequip / MACE. 77 Github stars (and counting!)

Key Point: Exploited structure in the tensor to engineer high performance kernels.

Related Work: Graph neural networks have myriad applications; we study another useful
kernel, SDDMM, in our IPDPS 2022 paper [BBD22].

® Next: a more general problem where we must discover structure in the sparse tensor.
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Part 2: Randomized Sparse Tensor Decomposition
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Motivating Application )

® Our goal: efficiently solve an overdetermined linear least-squares problem

H;énHAX - Bl

where A =U; ® ... © Uy with U; € RI*E,

e
U U
——
o, F——
= g vm
=
o
U| UZ

® Key kernel in alternating least-squares Candecomp / PARAFAC (CP) decomposition [LK22].
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ALS and the Multilinear Map )

min
U

IIllIl
U;

OU:

k#j

T T
U; — mat (7T, 7)

F
i U2T - . = . . o . .
Us . U, . mat(7, 2) Us
I =
O] 3 - ®
U1 . Ul
F
MTTKRP
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Randomized Linear Least-Squares et

e Sketch & Solve: Apply short-wide sketching matrix S to both A and B, solve reduced
problem

ming |SAX - SBHF
® Want an (g, ) guarantee on solution quality: with high probability (1 — ),

HAX BH (1+2)min| AX - B|

® |n this talk: we will just randomly sample J rows of A and B to form a pair of much
shorter matrices. Preserves structure in both input and output.
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Our Contributions [Bha+23] e

METHOD SOURCE  ROUND COMPLEXITY (O NOTATION)
CP-ALS [KBO9]  N(N+DNIN'R

CP-ARLS-LEV  [LK22]  N(R4+ I)R™/(e6)

TNS-CP [MaL22]  N?IR?/(&9)

GTNE [MS22]  N?*(N'PR3*%/e® + IR?)/e?
STS-CP OURS N(NR?*logI + IR?)/(f)

® We build a data structure with runtime logarithmic in the height of the KRP and quadratic
in R to sample from leverage scores of A.

® Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP
decomposition than recent SOTA methods (even more advantage for sparse tensors).
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Intuition: Do | Need Every Row? =

® Consider a univariate regression problem with 100,000 (x, y) points.

® This is a highly-overdetermined problem. Can pick a subset of points to perform fitting.

Figure: y; ~ x; + N(0,1)
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Leverage Score Sampling )

We will sample rows i.i.d. from A according to the leverage score distribution on its rows.
Givenreduced SVD A = UXV T, define

= U7

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose S € R7*! js a leverage-score sampling matrix for A € R'*E, and define
X := argmin HSAX = SBH
X F
If J 2 Rmax(log(R/d),1/(ed)), then with probability at least 1 — 6,

HAX BH (1+)min||AX — B
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Implicit Leverage Score Sampling =

e For I =107, N = 3, matrix A has 102! rows. Can’t even index rows with 64-bit integers.
Instead: use identity (; = A[i,:] (ATA)TAi,:]".

® Draw arow from each of Uy, ..., Uy, return Hadamard product.

'( ( ‘ o 08} ‘ o 07}

U u u u

1 2 3 4

® Let 5, be arandom variable for the row index drawn from U;. Assume (51, ..., §n) jointly
follows leverage score distributiononU; © ... ® Uy.
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The Conditional Distribution of s,

| | | | " ® ]
(;1 (;2 (;3 (;4 (;5 G
S1
$9 PINV
I ss
th
® - G- ® 6"
p(3 = 51, | S<r = s<k) o< (heph L, Up [sy, 1] Uy [sh, ], )
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Key Sampling Primitive /A\|ﬂ
q [Z] = Cil<h<k‘h—<rk»a Uk [iv :}T Uk [i7 :]ﬂ >

® Imagine we magically had all entries of q - how to sample? Initialize I bins, j-th has width
q[j]-

® Choose randomreal r in [0, 1], find “containing bin” ¢ such that

> alil<r<ali
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Binary Tree Inversion Sampling T

® | ocate bin via binary search (truncated to
log(I/R) levels)
® Root: branch right iff ZJI/IQO qljl<r

® [evel 2: branch right iff

1/2 s ’ o ‘ u® ‘ u® I y® ‘
Zq le;g alj] <r

Key: Can compute summations quickly if we cache information at each node!
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Caching Partial Gram Matrices =

Associate internal node v to an interval of rows [S(v)...E(v)].

E(v) E(v) .
> qlil= > CMhorhly, Uelh] Uilh, ], G o)
7=8(v) j=8(v)

= C_1<h<khzlvav >

Can compute G" for ALL nodes v in time O(I R?), storage space O(IR). Use BLAS-3 syrk calls
in parallel to efficiently construct the tree.
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Efficient Sampling after Caching =

® Atinternal nodes, compute
C~Yhoihl,, GY, ) in O(R?) time (read
normalization constant from root).

® At leaves, spend O(R?) time to compute
remaining values of q. Can reduce to
O(R?log R), see paper.

o [ [ [ ]

e Complexity per sample: O(N R?logI)
(summed over all tensor modes).
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Geometry Preservation T
Define D(S, A) of sketch S with respect to matrix A by
D(S, A) = k(SQ) — 1

where Q is any orthonormal basis for the column space of A. Quantifies the distance
preservation property of a sketch.

102 2% X
2 i*‘% .
eI L R .
i e
75100 %
|lE s E s FE ] =

10! f %

4 5 6 7 8 9 10 16 32 64 128
N R

BN Product Approximation  HEE Our Sampler

Figure: D(S, A) as a function of KRP matrix count N and column count R, J = 65, 536. Green: our sampler. Blue: product
approximation by [LK22].
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Uber (~3.3e6 nz)

Enron* (~5.4e7 nz)

NELL-2* (~7.7e7 nz)
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0.36 s ' ]
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Figure: Sparse tensor ALS accuracy comparison for J = 216 samples, varied target ranks.

Accuracy Comparison for Fixed Sample Count ’A\m
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STS-CP Makes Faster Progress to Solution

0.100 1

0.095 1

t

™ 0.090 -

0.085 1

—— STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840

—— CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304

—— CP-ARLS-LEV, J=65,536

0.080

0

1000 2000 3000 4000 5000 6000 7000
Cumulative ALS Update Time (s)

Figure: Fit vs. ALS update time, Reddit tensor, R = 100.

)
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Takeaways e

Our data structure can downsample Khatri-Rao products with trillions of rows.

Effectively preserves column-space geometry, offers OOM sample efficiency boost,
1.5-2.5x speedup over SOTA baseline methods.

® Data structures rely on common BLAS2, BLAS3 primitives, rendering them efficient.

® Compare to part 1: here, we exploit structure in the Khatri-Rao product, not the tensor.
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Extension 1: Distributed Parallelism [Bha+24a] /A\m

0.110

® SPAA 2024 Paper: High-performance
implementations of STS-CP and CP-ARLS-LEV in
the distributed-memory parallel setting.

0.105 1

0.100 1

0.095 1

0.090 1

Fit

® Up to 11x speedup over SPLATT on hundreds of 0.085
MPI ranks / thousands of CPU cores. 0080 1 — spLatr
0.075 1 —— d-STS-CP (ours)
d-CP-ARLS-LEV (ours)
0.070 T T T T T T T
® e optimize both communication and 0 0 400 600 800 1000 1200

computation in multiple stages of the solver. ) ) )
Figure: Accuracy vs. time, Reddit tensor, R = 100, 512 cores

/ 4 Perimutter CPU nodes, 4.7B NNZ.

43/56



Extension 2: Sketched TT [Bha+24b] )

® NeurlPS 2024: Apply theoretical machinery Ry
developed here to sketch tensor trains or matrix >
product states.
® Consider cores Ay, ..., A;, let A<; be the
matricization of the chain. = | Ay L1515

® When cores are in a special canonical form,
exploit tree DS to sample A<; with high
efficiency.
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Future Work: Inverse Problems /\lﬂ

Figure: Electric field lines, human thorax (CC3.0 Wikimedia, Andy Adler).
® 2D EIT requires us to solve a linear least-squares problem of the form
. 2
min (A1 © A1 + A1 © Agz) x — bl|

where A1, A1, As1, Azs depend on geometry. Must adapt leverage-based sketch.

® More interesting problem: where to place electrodes along boundary to gain maximum
information? Sensor placement problem, solve by volume (determinant) maximization.
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Analysis and Future Directions
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The Upshot e

® This presentation focused on a single operation... but we used techniques from
® |LP-maximizing, fine-grained GPU kernel engineering
® Randomized algorithm theory
® Distributed-memory communication analysis

We explored parallel computing motifs that include

® Dense matrix multiply (warp-level)
® Multiple sparse matrix / tensor primitives
® Particle simulation / molecular dynamics

® \We accelerated applications ranging from chemistry foundation models to
multidimensional pattern mining / data analysis.

A lot of mileage for one simple primitive!
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Future Work /\lﬂ

P/ NP, PSPACE...
O(exp(N)), O(N log N)...

® Up the Stack: How do we co-design new MLIP A

models / algorithms to exploit accelerated

primitives?

I New Algorithms & Models

® Down the Stack: How do we design systems
(e.g. ML compilers) to automate kernel
engineering while delivering high
performance? {

—— HPC Research / Optimization

—— Efficient Kernel Design

gLy

.

Y

e Scientific / Industry Collaborations: So much
needs acceleration - got a problem? Let’s talk.
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A
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https://www.xkcd.com/1403/

48/56


https://www.xkcd.com/1403/

My Advisers

Aydin Bulug James Demmel

49/56



Committee, Collaborators, and Fellow Grads ’A\m
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