~

&r

Accelerating Multilinear Maps and

Structured Sparse Tensor Kernels

EECS Department Dissertation Talk
July 21, 2025

Vivek Bharadwaj

Committee in Charge

Professor James Demmel, co-chair

Adj. Associate Professor Aydin Bulug, co-chair
Professor Katherine Yelick

Assistant Professor Michael Lindsey

)

Multilinear Algebra in the Exascale Era =

more.

b’ Iﬂaa‘t%%a] L aboratory.
|

o-—

® Linear algebra drives progress in scientific computing and machine learning.
® LLNL El Capitan: 1.7 x 10'® FP64 FLOPs on LINPACK, more in lower precision.

® Growing number of applications rely on multilinear algebra: much less studied /
optimized. Let’s survey three such applications.

2/56

Symmetry-Preserving Chemistry Models)

® Scientists today can use neural
networks to quickly approximate atomic
forces, predict properties of molecular
systems.

® State-of-art models even bake physical
laws, like symmetry, into network
structure.

® Accurate, high throughput simulation
could revolutionize material discovery
and drug design.

Figure: Perovskite crystal visualized with x3dase.

3/56

)

Multidimensional Network Analysis =

)] VLRI
\ e \ i
[[

o, +...+ 0y
U1 UL
—
o
U, Uy

® Consider alarge, sparse array containing, e.g., e-commerce review data, Reddit word
usage, etc.

® \We have mathematical tools to cluster / analyze quantities of interest using only the
location and values of nonzero elements by generalizing matrix PCA.

4/56

)

Inverse Problems and Tomography =

We can image interior of biological tissue by applying weak currents, measuring voltages on a
boundary, solving linear least-squares problems [Che+20].

Figure: EIT demo on orange (CC2.0 Wikimedia, John Cummings).

5/56

Multilinear Maps: The Common Pattern

Efficient Multilinear Map / MTTKRP

Applications

Z; = ZAjquuini
U,

6/56

Warm-up: Linear Maps et
® Consider f : R — R™ satisfying
flax) = of (x) fl+y) =flx)+ fy)

What linear algebraic primitive lets us evaluate such maps efficiently?

® Answer: Matrix-vector multiply for one input, matrix-matrix multiply enables high
performance for multiple inputs: f(X) = AX, A € R™*",

7/56

)

Multilinear Maps and the MTTKRP =

Consider a multilinear function

H H ! ° f(x,y). What fundamental kernels

allow efficient evaluation?

Z,=A X;®Y,)
Y| Yo Y . .
Zji = Y AjwXu Y ® Answer: matrix-vector multiply by a

Kronecker product:
HH - fl@,y)= Az @ y), A e RV,
J matrix-matrix multiplication by a
ff Khatri-Rao product for a batch:

fF(X,)Y)=AX0Y).

E

8/56

Challenges and Opportunities ’A\m

Extreme tensor
sparsity

@

Large intermediate
quantities

Difficult theory and
implementation

s 2\
v T e

/

® Sparse tensors (e.g. Reddit-2015 [Smi+17])
exhibit nonzero fraction as low as 4 x 10~19;
curse of dimensionality.

® Kronecker product height is exponential in
input dimension; costly to materialize.

® Existing algorithms / software target matrices,
not tensors.

We accelerate the multilinear map in two important applications, offering OOM speedups
via kernel engineering and asymptotically faster approximation algorithms.

9/56

)

Research Papers Covered Today =

In this talk, we explore multiple methods to accelerate the batched multilinear map:

1. Optimizing Chemistry Foundation Models: An Efficient Sparse Kernel Generator for
0(3)-Equivariant Deep Networks. ACDA [Bha+25].

2. Accelerated Randomized Tensor Decomposition: Fast Exact Leverage Score Sampling
from Khatri-Rao Products. NeurlPS [Bha+23].

3. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. SPAA
[Bha+24a].

4. Efficient Leverage Score Sampling for Tensor Trains. NeurlPS [Bha+24b].

5. Distributed-Memory Sparse Kernels for Machine Learning. IPDPS [BBD22].

10/56

Part 1: Clebsch-Gordon Tensor Products

rrrrrr ﬂ

Geometric Deep Learning in Atomic Simulation =

Atom metadata and positions Deep Graph Neural Network System Energy and Forces

® Geometric deep learning achieves SOTA performance for fast interatomic potential
calculation. Key primitive is the message-passing graph neural network.

® |nput: atom metadata and positions. Output: system energy, atomic forces.

11/56

)

Respecting Physical Symmetries =

® \Message-passing GNNs generate messages
for each node and edge.

® (Q(3)-Equivariance: if the input coordinate
system rotates, the output energy stays the
same and the predicted forces rotate
compatibly.

® Need to combine node, edge featuresin a
highly structured, prescriptive manner.

12/56

The Clebsch-Gordon Tensor Product
- A
= NS W “ . ﬁ
[= @
|]

z=W -P-(zoy)=W Y z[]ylj]P[ij]

i=1,j=1

Kernel typically executes on a large batch of (z,y, W) inputs (B ~ 105 — 107).

13/56

Our Contributions [Bha+25])

We introduce OpenEquivariance, a fast kernel generator for CG tensor products with up to 10x
speedup over the popular e3nn package, on par with NVIDIA cuE (joint work with Austin Glover).

Numpy PyTorch

® Exploits sparse structure in the multilinear map
tensor via JIT, register caching, loop unrolling. Computation Scheduler / Python Interface

C++ JIT Adapter

® Provides FlashAttention-style [Dao+22] backward

pass, novel identities for higher gradients.

NVRTC HIPRTC

® Fuses CG tensor product with graph convolution, CUDA Kemels
saving orders of magnitude of memory.

HIP Kernels

NVIDIA GPUs AMD GPUs

14/56

)

Applications of OpenEquivariance =

ligand & DIFFDOCK ranked poses &
protein confidence score

®
&
@

NequlP 2

(a) Nequip [Bat+22] (b) DiffDock [Cor+23] (c) MACE-MPO [Bat+24]

15/56

)

Subkernels of the CG Tensor Product /\lﬂ

® Many nonzero blocks repeated in

Matrix-multipl;
the sparse tensor (known at o H by‘mem‘&yH -
. . — |7 =
model compile-time). o7

x]

® Qperation splits into many

P
o
smaller operations (subkernels) = - ! -
—_— |z |- oz
D — R
[]

—b—

t
b
1

o
—p—
N|= | S
3 — z :‘j |l Z

L=16,=106=1 L=2,6,=40=3 L=6,0,=8.0.=9

nonzero % = 0.22 nonzero % = 0.16 nonzero % = 0.08

16/56

A Roadmap to Efficient CG Kernels

Assign each batch element to

distinct GPU warp

reeeec| |l

Schedule subkernels to
manage SMEM usage, avoid
memory traffic

Warp 1 H

Warp 2 H

Load subsegments of x, y, W into SMEM, reshape

Warp 3 '

Register-cache operands, use

JIT to emit optimized
instruction stream

Source

17/56

Warp-Level Forward Algorithm

Algorithm Subkernel C Warp-Level Algorithm

Require: X € RV X(20e+1) o ¢ R(26y+1) W ¢ REXY
Require: Sparse tensor P = :y:¢=) for subkernel

fort =1...t/ do > Parallel over threads
Load @reg = X [t,:], Yreg = Y
Initialize zreg € RZ2+1 10 0.

for (i,4,k,v) € nz(PU-v:tz))do o Unroll via JIT
Zreg [K] += v - Treg [4] - Yreg [4]

Store Z' [t,:] = zreg, cOmpute Z +=W - Z'.

)

rrerere ﬂ

® Gradient calculation
(backward pass) is
similar, but requires 3
update equations
instead of 1.

18/56

)

Optimizing Model Force Predictions =

® The derivative of predicted energy E(R, W) w.r.t. atomic positions R yields atomic
forces. Want to solve

. . 2
H‘}‘lfl’lﬁ(R, W)= min | For (R, W) — Fy (R)|| 7

® To minimize difference between predicted forces and ground truth, need second partial
derivative of energy:

oL 7 O0Fp
W =2. vec(Fpr(R, W) - th(R)) oW
T O°E

= =2 vee(Fpu(R, W) = Fy(R)) ' 5o

19/56

Novel Identities for Second Partial Derivatives ’A\m

® PyTorch gladly takes the second partial derivative... if you supply a “double-backward”
pass for the CG tensor product.

® Key: No additional kernel engineering required! Double-backward can be expressed as a
linear combination of forward / backward calls:

opl = backward(9L/0a,dL/0b,W ,g.)
op2 = backward(x,y,0L/0C,g.)

op3 =TP(0L/da,y, W)

op4 = backward(9L/0a,y, W ,g.)

opb = backward(x,dL/0b,W g.)

opb = TP (x,0L/0b, W)

op7 = TP(x,y,0L/0C)

OL/0x = opl [1] + op2 [1]

0L /0y = opl 2] 4+ op2[2]
OL/OW = op4 [3] + op5 [3]
0L/dg, = op3 + opb + op7

20/56

Kernel Fusion

® Graph convolution has SpMM
memory access pattern

® Fuse both kernels to save
compute AND memory!

)

rrerere ﬂ

Algorithm Deterministic TP + Graph Convolution

Require: Graph G = (V, E), E [b] = (ip, jb)
Require: Batch z1,...,x|v |, y1, ..y g, W1, ..., W|g
for segment,; € schedule do
(s,t) = E[K][0], E[k] [1]
Set zacc =0
forb=1...|E| do
Execute segment subkernel sequence
Zacc += Zsmem
ifo=|E|ors < E[b+ 1] [0] then
if sis first vertex processed by warp then

> Parallel over Warps

Send z,c. to fixup buffer.
else
Store zacc to global memory.
Zace =0
Execute fixup kernel.

21/56

Throughput (Unfused, A100)

le8
12
1.59 1.0
. 0.8
% 24 0.6
5
D K
3 0.4
g 059
a 0.2
g oo- 0.0
g 1e7 1e7
#* 81
= 4
=1
2 64
=
g ’
3 Za4]
2 < 2
E 3
£ a
27 1

&> g g o & o & o
F &5 ST
SN P F S
& T & & ST
DY RS S S
& D & 2 S
o & ¢ TS
))
&96§9 & S
SRR Q‘Z'ov &
<~
float32 float64

reeeec| |l

22/56

Cross-Platform Performance

)

rrerere ﬂ

GPU forward backward
e3nn cuE ours e3nn cukE ours
A100 13 28 2.0 21 3.5 37
A5000 29 42 3.8 42 93 N
MI250x 41 - 3.0 128 - 15

Table: MACE-large isolated tensor product runtime (ms), batch size 50K, FP32 unfused.

23/56

Roofline Analysis

10! 4

100 4

Performance [TFLOP/s]

\x\’>’>§

A100-SXM-80GB FP32 Peak: 19.5 TFLOP/s
forward-ours

forward-cuE -
forward-cuE-old e $ %
backward-ours T ol
backward-cuE o # !
backward-cuE-old -7

o
" (\’595 \/)"L *
Q. 2>

LT + »

100 101
Arithmetic Intensity [FLOP/Byte]

rrerere ﬂ

24/56

Acceleration of MACE Foundation Model

Simulation Speed (MSteps / day)

-

<

(&
s

1.50 1

1.25

1.00 1

0.75 A

0.50 1

0.25 A

0.00 -

(5%

1000

;&by

140

cuE-old

1201

100 13

80 4

60 4

404

Device Time Breakdown (ms)

>

& S

MACE Model Datatype

e3nn
cuE-old
cuE
ours

[ours-cuE-hybrid
Il CTP Kernels
Il Scatter-sum
[Other

)

rrerere ﬂ

25/56

)

Takeaways e

® OpenEquivariance achieves SOTA performance, provides 5-6x end-to-end speedup for
Nequip / MACE. 77 Github stars (and counting!)

Key Point: Exploited structure in the tensor to engineer high performance kernels.

Related Work: Graph neural networks have myriad applications; we study another useful
kernel, SDDMM, in our IPDPS 2022 paper [BBD22].

® Next: a more general problem where we must discover structure in the sparse tensor.

26/56

rrrrrr ﬂ

Part 2: Randomized Sparse Tensor Decomposition

)

Motivating Application)

® Our goal: efficiently solve an overdetermined linear least-squares problem

H;énHAX - Bl

where A =U; ® ... © Uy with U; € RI*E,

e
U U
——
o, F——
= g vm
=
o
U| UZ

® Key kernel in alternating least-squares Candecomp / PARAFAC (CP) decomposition [LK22].

27/56

ALS and the Multilinear Map)

min
U

IIllIl
U;

OU:

k#j

T T
U; — mat (7T, 7)

F
i U2T - . = . . o . .
Us . U, . mat(7, 2) Us
I =
O] 3 - ®
U1 . Ul
F
MTTKRP

28/56

)

Randomized Linear Least-Squares et

e Sketch & Solve: Apply short-wide sketching matrix S to both A and B, solve reduced
problem

ming |SAX - SBHF
® Want an (g,) guarantee on solution quality: with high probability (1 —),

HAX BH (1+2)min| AX - B|

® |n this talk: we will just randomly sample J rows of A and B to form a pair of much
shorter matrices. Preserves structure in both input and output.

29/56

)

Our Contributions [Bha+23] e

METHOD SOURCE ROUND COMPLEXITY (O NOTATION)
CP-ALS [KBO9] N(N+DNIN'R

CP-ARLS-LEV [LK22] N(R4+ I)R™/(e6)

TNS-CP [MaL22] N?IR?/(&9)

GTNE [MS22] N?*(N'PR3*%/e® + IR?)/e?
STS-CP OURS N(NR?*logI + IR?)/(f)

® We build a data structure with runtime logarithmic in the height of the KRP and quadratic
in R to sample from leverage scores of A.

® Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP
decomposition than recent SOTA methods (even more advantage for sparse tensors).

30/56

)

Intuition: Do | Need Every Row? =

® Consider a univariate regression problem with 100,000 (x, y) points.

® This is a highly-overdetermined problem. Can pick a subset of points to perform fitting.

Figure: y; ~ x; + N(0,1)

31/56

)

Leverage Score Sampling)

We will sample rows i.i.d. from A according to the leverage score distribution on its rows.
Givenreduced SVD A = UXV T, define

= U7

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose S € R7*! js a leverage-score sampling matrix for A € R'*E, and define
X := argmin HSAX = SBH
X F
If J 2 Rmax(log(R/d),1/(ed)), then with probability at least 1 — 6,

HAX BH (1+)min||AX — B

32/56

)

Implicit Leverage Score Sampling =

e For I =107, N = 3, matrix A has 102! rows. Can’t even index rows with 64-bit integers.
Instead: use identity (; = A[i,:] (ATA)TAi,:]".

® Draw arow from each of Uy, ..., Uy, return Hadamard product.

'((‘ o 08} ‘ o 07}

U u u u

1 2 3 4

® Let 5, be arandom variable for the row index drawn from U;. Assume (51, ..., §n) jointly
follows leverage score distributiononU; © ... ® Uy.

33/56

The Conditional Distribution of s,

| | | | " ®]
(;1 (;2 (;3 (;4 (;5 G
S1
$9 PINV
I ss
th
® - G- ® 6"
p(3 = 51, | S<r = s<k) o< (heph L, Up [sy, 1] Uy [sh,],)

34/56

Key Sampling Primitive /A\|ﬂ
q [Z] = Cil<h<k‘h—<rk»a Uk [iv :}T Uk [i7 :]ﬂ >

® Imagine we magically had all entries of q - how to sample? Initialize I bins, j-th has width
q[j]-

® Choose randomreal r in [0, 1], find “containing bin” ¢ such that

> alil<r<ali

35/56

)

Binary Tree Inversion Sampling T

® | ocate bin via binary search (truncated to
log(I/R) levels)
® Root: branch right iff ZJI/IQO qljl<r

® [evel 2: branch right iff

1/2 s ’ o ‘ u® ‘ u® I y® ‘
Zq le;g alj] <r

Key: Can compute summations quickly if we cache information at each node!

36/56

)

Caching Partial Gram Matrices =

Associate internal node v to an interval of rows [S(v)...E(v)].

E(v) E(v) .
> qlil= > CMhorhly, Uelh] Uilh,], G o)
7=8(v) j=8(v)

= C_1<h<khzlvav >

Can compute G" for ALL nodes v in time O(I R?), storage space O(IR). Use BLAS-3 syrk calls
in parallel to efficiently construct the tree.

37/56

)

Efficient Sampling after Caching =

® Atinternal nodes, compute
C~Yhoihl,, GY,) in O(R?) time (read
normalization constant from root).

® At leaves, spend O(R?) time to compute
remaining values of q. Can reduce to
O(R?log R), see paper.

o [[[]

e Complexity per sample: O(N R?logI)
(summed over all tensor modes).

38/56

Geometry Preservation T
Define D(S, A) of sketch S with respect to matrix A by
D(S, A) = k(SQ) — 1

where Q is any orthonormal basis for the column space of A. Quantifies the distance
preservation property of a sketch.

102 2% X
2 i*‘% .
eI L R .
i e
75100 %
|lE s E s FE] =

10! f %

4 5 6 7 8 9 10 16 32 64 128
N R

BN Product Approximation HEE Our Sampler

Figure: D(S, A) as a function of KRP matrix count N and column count R, J = 65, 536. Green: our sampler. Blue: product
approximation by [LK22].

39/56

Uber (~3.3e6 nz)

Enron* (~5.4e7 nz)

NELL-2* (~7.7e7 nz)

0.20
: i %
0.24 4 x X 0.08 1
¢ ¢ 4
$ 0.15 1 ‘ °
0.07 4 & s
= 0.22 4 = =
$ 9 i iz °
T 1 0104k L4, 0.06 1 $
0.20 1 9 b 4 |
0.05 1
¢ 0.05 1 T &
25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
Target Rank Target Rank Target Rank
Amazon (~1.8e9 nz) Reddit* (~4.7e9 nz)
0.40 4 . 3 & CP-ARLS-LEV
® M CP-ARLS-LEV (hybrid)
. 0.10 4 I @ STS-CP (ours)
0381 (] ! % Exact Solve
s =
i ° ¢ i hd
v 0.08
0.36 s ']
0.34 18 0.06 1@
25 50 75 100 125 25 50 75 100 125
Target Rank Target Rank

Figure: Sparse tensor ALS accuracy comparison for J = 216 samples, varied target ranks.

Accuracy Comparison for Fixed Sample Count ’A\m

40/56

STS-CP Makes Faster Progress to Solution

0.100 1

0.095 1

t

™ 0.090 -

0.085 1

—— STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840

—— CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304

—— CP-ARLS-LEV, J=65,536

0.080

0

1000 2000 3000 4000 5000 6000 7000
Cumulative ALS Update Time (s)

Figure: Fit vs. ALS update time, Reddit tensor, R = 100.

)

41/56

)

Takeaways e

Our data structure can downsample Khatri-Rao products with trillions of rows.

Effectively preserves column-space geometry, offers OOM sample efficiency boost,
1.5-2.5x speedup over SOTA baseline methods.

® Data structures rely on common BLAS2, BLAS3 primitives, rendering them efficient.

® Compare to part 1: here, we exploit structure in the Khatri-Rao product, not the tensor.

42/56

Extension 1: Distributed Parallelism [Bha+24a] /A\m

0.110

® SPAA 2024 Paper: High-performance
implementations of STS-CP and CP-ARLS-LEV in
the distributed-memory parallel setting.

0.105 1

0.100 1

0.095 1

0.090 1

Fit

® Up to 11x speedup over SPLATT on hundreds of 0.085
MPI ranks / thousands of CPU cores. 0080 1 — spLatr
0.075 1 —— d-STS-CP (ours)
d-CP-ARLS-LEV (ours)
0.070 T T T T T T T
® e optimize both communication and 0 0 400 600 800 1000 1200

computation in multiple stages of the solver.)))
Figure: Accuracy vs. time, Reddit tensor, R = 100, 512 cores

/ 4 Perimutter CPU nodes, 4.7B NNZ.

43/56

Extension 2: Sketched TT [Bha+24b])

® NeurlPS 2024: Apply theoretical machinery Ry
developed here to sketch tensor trains or matrix >
product states.
® Consider cores Ay, ..., A;, let A<; be the
matricization of the chain. = | Ay L1515

® When cores are in a special canonical form,
exploit tree DS to sample A<; with high
efficiency.

44/56

)

Future Work: Inverse Problems /\lﬂ

Figure: Electric field lines, human thorax (CC3.0 Wikimedia, Andy Adler).
® 2D EIT requires us to solve a linear least-squares problem of the form
. 2
min (A1 © A1 + A1 © Agz) x — bl|

where A1, A1, As1, Azs depend on geometry. Must adapt leverage-based sketch.

® More interesting problem: where to place electrodes along boundary to gain maximum
information? Sensor placement problem, solve by volume (determinant) maximization.

45/56

Analysis and Future Directions

rrrrrr ﬂ

)

The Upshot e

® This presentation focused on a single operation... but we used techniques from
® |LP-maximizing, fine-grained GPU kernel engineering
® Randomized algorithm theory
® Distributed-memory communication analysis

We explored parallel computing motifs that include

® Dense matrix multiply (warp-level)
® Multiple sparse matrix / tensor primitives
® Particle simulation / molecular dynamics

® \We accelerated applications ranging from chemistry foundation models to
multidimensional pattern mining / data analysis.

A lot of mileage for one simple primitive!

46/56

)

Future Work /\lﬂ

P/ NP, PSPACE...
O(exp(N)), O(N log N)...

® Up the Stack: How do we co-design new MLIP A

models / algorithms to exploit accelerated

primitives?

I New Algorithms & Models

® Down the Stack: How do we design systems
(e.g. ML compilers) to automate kernel
engineering while delivering high
performance? {

—— HPC Research / Optimization

—— Efficient Kernel Design

gLy

.

Y

e Scientific / Industry Collaborations: So much
needs acceleration - got a problem? Let’s talk.

47/56

Acknowledgements - Thank you to...

rrrrrr ﬂ

Everyone in Attendance!

(and your taxpayer dollars funding this research)

IN CONCLUSION,

1/
~ \AAAARNAAAAAA !
) g

NLE
A

THE BEST THESIS DEFENSE 1S5 A GOOD THESIS OFFENSE.

https://www.xkcd.com/1403/

48/56

https://www.xkcd.com/1403/

My Advisers

Aydin Bulug James Demmel

49/56

Committee, Collaborators, and Fellow Grads ’A\m

Committee Members: Michael Lindsey and Katherine Yelick- thank youl!

Collaborators: Russell Castro, Austin Glover, Laura Grigori, Riley Murray, Guillaume Rabusseau
and Beheshteh Rakhshan, with very special thanks to Osman Malik.

Members of PASSION and BeBOP: Benjamin Brock, Alok Tripathy, Giulia Guidi, Roger Hsiao,
Tianyu Liang, Gabriel Raulet, Yen-Hsiang Chang.

50/56

)

Supporters Over Many Years et

Undergraduate / internship advisers: Chris Umans, Rose Yu, Mikhail Shapiro, and Adam
Sheffer while | was at Caltech, and Federico Busato at NVIDIA!

Members of the CSGF Program: Koby Hayashi, Caleb Ju, Grace Wei, Mansi Sakarvadia,
Santiago Vargas, Albert Muesalian, Gabby Jones, Julian Bellavita, Kiran Eiden, Mary Francis

LaPorte, Olorundamilola Kazeem, Ethan Epperly, and so many others.

Especially: Allison Wang, Anant Kale, Hanwen Zhang, Emily Pan, Daniel Mark. And of course,
Aditi Lahiri. Thank you for everything.

51/56

)

My Family)

52/56

La fin!

rrrrrr ﬂ

)

References | ’\m

[Bat+22] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. “E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials”. In: Nature Communications 13.1 (May 2022),
p. 2453. ISSN: 2041-1723. DOI: 10.1038/s41467-022-29939-5. URL:
https://doi.org/10.1038/s41467-022-29939-5

[Bat+24] llyes Batatia et al. A foundation model for atomistic materials chemistry. 2024. arXiv: 2401 .00096
[physics.chem-ph]. URL: https://arxiv.org/abs/2401.00096.

[BBD22] Vivek Bharadwaj, Aydin Bulug, and James Demmel. “Distributed-Memory Sparse Kernels for Machine
Learning”. In: 2022 IEEE International Parallel and Distributed Processing Symposium. Los Alamitos, CA,
USA: IEEE Computer Society, June 2022, pp. 47-58. D0OI: 10.1109/IPDPS53621.2022.00014.

[Bha+23] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Laura Grigori, Aydin Bulug, and James Demmel. “Fast
Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition”.
In: Thirty-seventh Conference on Neural Information Processing Systems. Dec. 2023.

53/56

https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://arxiv.org/abs/2401.00096
https://arxiv.org/abs/2401.00096
https://arxiv.org/abs/2401.00096
https://doi.org/10.1109/IPDPS53621.2022.00014

)

References Il ’\m

[Bha+24a] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Aydin Bulug, and James Demmel. “Distributed-Memory
Randomized Algorithms for Sparse Tensor CP Decomposition”. In: Proceedings of the 36th ACM
Symposium on Parallelism in Algorithms and Architectures. SPAA '24. Nantes, France: Association for
Computing Machinery, May 2024, pp. 155-168. I1SBN: 9798400704161. DOI: 10.1145/3626183.3659980. URL:
https://doi.org/10.1145/3626183.3659980.

[Bha+24b] Vivek Bharadwaj, Beheshteh T. Rakhshan, Osman Asif Malik, and Guillaume Rabusseau. “Efficient
Leverage Score Sampling for Tensor Train Decomposition”. In: Thirty-eighth Conference on Neural
Information Processing Systems. Dec. 2024. arXiv: 2406.02749 [cs.DS].

[Bha+25] Vivek Bharadwaj, Austin Glover, Aydin Bulug, and James Demmel. “An Efficient Sparse Kernel Generator
for O(3)-Equivariant Deep Networks”. In: Proceedings of the 3rd SIAM Conference on Applied and
Discrete Computational Algorithms. July 2025. URL: https://arxiv.org/abs/2501.13986.

[Che+20] Ke Chen, Qin Li, Kit Newton, and Stephen J. Wright. “Structured Random Sketching for PDE Inverse
Problems”. In: SIAM Journal on Matrix Analysis and Applications 41.4 (2020), pp. 1742-1770. bot:
10.1137/20M1310497.

54/56

https://doi.org/10.1145/3626183.3659980
https://doi.org/10.1145/3626183.3659980
https://arxiv.org/abs/2406.02749
https://arxiv.org/abs/2501.13986
https://doi.org/10.1137/20M1310497

)

References lll ’\m

[Cor+23] Gabriele Corso, Hannes Stark, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. “DiffDock: Diffusion
Steps, Twists, and Turns for Molecular Docking”. In: The Eleventh International Conference on Learning
Representations. 2023.

[Dao+22] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. “FlashAttention: Fast and
Memory-Efficient Exact Attention with I0-Awareness”. In: Advances in Neural Information Processing
Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran
Associates, Inc., 2022, pp. 16344-16359.

[KB09] Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”. In: SIAM Review 51.3
(Aug. 2009). Publisher: Society for Industrial and Applied Mathematics, pp. 455-500. 1ISsN: 0036-1445. po:
10.1137/07070111X

[LK22] Brett W. Larsen and Tamara G. Kolda. “Practical Leverage-Based Sampling for Low-Rank Tensor
Decomposition”. In: SIAM Journal on Matrix Analysis and Applications 43.3 (2022), pp. 1488-1517.

55/56

https://doi.org/10.1137/07070111X

)

References IV ’\m

[Mal22] Osman Asif Malik. “More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees”. In:
Proceedings of the 39th International Conference on Machine Learning. Vol. 162. Proceedings of
Machine Learning Research. PMLR, July 2022, pp. 14887-14917.

[MS22] Linjian Ma and Edgar Solomonik. “Cost-efficient Gaussian tensor network embeddings for
tensor-structured inputs”. In: Advances in Neural Information Processing Systems. Vol. 35. Curran
Associates, Inc., 2022, pp. 38980-38993.

[Smi+17] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. FROSTT:
The Formidable Repository of Open Sparse Tensors and Tools. 2017. URL: http://frostt.io/.

56/56

http://frostt.io/

	Part 1: Clebsch-Gordon Tensor Products
	Part 2: Randomized Sparse Tensor Decomposition
	Analysis and Future Directions
	Acknowledgements - Thank you to...
	La fin!

