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The Berkeley BeBOP and PASSION Groups

I work with two groups at UC Berkeley:

• The Berkeley Benchmarking and Optimization

(BeBOP) group led by James Demmel and

Katherine Yelick.

• The Parallel Algorithms for Scalable Sparse

computatIONs (PASSION) group led by Aydın

Buluç, joint with Lawrence Berkeley National

Lab.

Our interests include linear algebraic

computations and sparse kernels that can be

parallelized and deployed at supercomputer scale. Figure: Frontier, the first exascale

supercomputer in the United States. Credit:

OLCF, Wikimedia Commons CC2.0.
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Link to Today’s Paper

Fast Exact Leverage Score Sampling From Khatri-Rao Products with Applications to Tensor

Decomposition [Bha+23]. Link to paper below, more at https://vivek-bharadwaj.com.
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Introduction



The Khatri-Rao Product

• In this talk, the Khatri-Rao product (KRP, denoted�) is the column-wise Kronecker

product of two matrices: [
a b
c d

]
�
[
w x
y z

]
=


aw bx
cw dx
ay bz
cy dz


• Output column count is identical to inputs. Output row count is the product of row

counts of inputs.

• Appears in signal processing, compressed sensing, PDE inverse problems. Possible use in

hyperdimensional computing where⊗, the Kronecker product, used for binding.
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Motivating Application

• Our goal: efficiently solve an overdetermined linear least-squares problem

min
X

‖AX −B‖F

whereA = U1 � ...� UN with Uj ∈ RI×R.

• Key kernel in alternating least-squares Candecomp / PARAFAC (CP) decomposition [LK22].
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One Step of ALS Illustrated
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Randomized Linear Least-Squares

• Sketch & Solve: Apply short-wide sketching matrix S to bothA andB, solve reduced

problem

minX̃

∥∥∥SAX̃ − SB
∥∥∥
F

• Want an (ε, δ) guarantee on solution quality: with high probability (1− δ),∥∥∥AX̃ −B
∥∥∥
F
≤ (1 + ε)min

X
‖AX −B‖

• Could choose S as:

• An i.i.d. Gaussian / Rademacher random matrix
• A Countsketch / Sparse Sign embedding (fixed nnz per column)
• A composition of random diagonal, FFT-like operator, and uniform sparse sampler

7/39



Subspace Embedding Matrices

i.i.d. Gaussian[
−0.01 −0.39 0.37
−0.47 0.74 −0.10

] Countsketch[
+1 0 +1
0 −1 0

]

• Oblivious subspace embeddings: require no prior information about A; easy to construct

and apply when inputs have no structure, but harder for Khatri-Rao products.

• In this talk: we will just randomly sample J rows ofA andB to form a pair of much

shorter matrices. Preserves structure in both input and output.
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Our Contributions [Bha+23]

Method Source Round Complexity (Õ notation)

CP-ALS [KB09] N(N + I)IN−1R
CP-ARLS-LEV [LK22] N(R+ I)RN/(εδ)
TNS-CP [Mal22] N3IR3/(εδ)
GTNE [MS22] N2(N1.5R3.5/ε3 + IR2)/ε2

STS-CP Ours N(NR3 log I + IR2)/(εδ)

• We build a data structure with runtime logarithmic in the height of the KRP and quadratic

inR to sample from leverage scores ofA.

• Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP

decomposition than recent SOTA methods (even more advantage for sparse tensors).
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Statistical Leverage Scores



Intuition: Do I Need Every Row?

• Consider a univariate regression problem with 100,000 (x, y) points.

• This is a highly-overdetermined problem. Can pick a subset of points to perform fitting.
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Figure: yi ∼ xi + N (0, 1)
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Leverage Score Sampling

We will sample rows i.i.d. fromA according to the leverage score distribution on its rows.

Given reduced SVD A = UΣV >, the leverage score `i of row i is

`i = ‖U [i, :]‖2 .

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose S ∈ RJ×I is a leverage-score sampling matrix forA ∈ RI×R, and define

X̃ := arg min
X̃

∥∥∥SAX̃ − SB
∥∥∥

F

If J & Rmax(log(R/δ), 1/(εδ)), then with probability at least 1− δ,∥∥∥AX̃ −B
∥∥∥
F
≤ (1 + ε)min

X
‖AX −B‖F .
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Interpretation of Leverage Scores

When A has 1 column, leverage scores are proportional to squared distance from origin.
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Figure: A univariate regression problem with low and high leverage points (intercept constrained to be 0).
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Interpretation of Leverage Scores

In general, leverage scores ofA quantify influence that each row has on the solution, capture

correlation of rows of A with rows of Σ−1V >.
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Figure: Leverage scores of (x, y, 0) triples from a multivariate normal distribution. Left: components ofΣ−1V > shown. Right: the

red point has greater influence than the blue point (both equidistant from (0, 0, 0)).
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Interpretation of Leverage Scores

• Leverage score sampling captures the geometry of the column space ofA.

• Rigorously: sampling i.i.d. with leverage score probabilities leads to an optimal [DM20]

sample complexity to construct an `2-subspace embedding matrix S.

• SE Property: W.h.p simultaneously for ALL vectors x ∈ RR,

(1− ε̃) ‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε̃) ‖Ax‖2

• In turn, an `2-S.E. guarantees that our sketched solution has close-to-optimal residual

with respect to the original problem.
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Prior Work

Problem: Cost to compute all leverage scores exactly is identical to runtime of QR

decomposition. Defeats the purpose of sampling!

• (SPALS [Che+16]): Sample rows according to approximate leverage scores ofA.

Worst-case exponential inN to achieve (ε, δ) guarantee.

• (CP-ARLS-LEV [LK22]): Similar approximation, hybrid random-deterministic sampling

strategy and practical improvements.

• (TNS-CP [Mal22]): Samples implicitly from exact leverage distribution with polynomial

complexity to achieve (ε, δ) guarantee, but linear dependence on I for each sample.

We want to accelerate this algorithm.
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Efficient Sampling from Khatri-Rao Products



Implicit Leverage Score Sampling

• For I = 107, N = 3, matrixA has 1021 rows. Can’t even index rows with 64-bit integers.

Instead: use identity `i = A [i, :] (A>A)+A [i, :]
>
.

• Draw a row from each of U1, ..., UN , return their Hadamard product.

[0.1   0.5  -0.9   ... 0.3] [0.0   0.1  0.2   ... 0.9] [-0.8   0.3  0.3   ... -0.9] [-0.8   -0.1  0.5   ... 0.7]

U1
U2 U3 U4

• Let ŝj be a random variable for the row index drawn from Uj . Assume (ŝ1, ..., ŝN ) jointly
follows the leverage score distribution on U1 � ...� UN .
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The Conditional Distribution of ŝk

G1 G2 G3 G4 G5 G

G>k G+

~

~

PINV

s1

s2
s3

h>
<k

~

p(ŝk = sk | ŝ<k = s<k) ∝ 〈h<kh
>
<k, Uk [sk, :]

>
Uk [sk, :], G>k〉
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A Problem of Variable Dependence

• Each subsequent index depends on the ones that precede it. How to deal with the

dependence? Let’s look at four approaches:

• Only a finite number of values for ŝ1, ŝ2. Precompute and store all possible conditional

distributions for ŝ3, and similarly for ŝ4, ŝ5...

• Preprocessing time is Ω
(
IN

)
, not viable for large I .

Preprocessing Time Time for J Samples # Samples Required

Ω(IN ) O(JN) O(R/(εδ))
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Approach 2: Ignore the Dependence

• Sample independently from U1, ..., UN based on the leverage scores of each factor

matrix [Che+16; LK22].

• No longer sampling from the exact leverage score distribution, so requireO(RN/(εδ))
samples to achieve the (ε, δ) guarantee.

• Efficient ifR,N low enough. Can easily update if one matrix Uj changes.

Preprocessing Time Time for J Samples # Samples Required

O(NIR2) O(JN) O(RN/(εδ))
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Approach 3: Form Full Conditional Distribution

• Compute the full conditional distribution p(ŝ3 = s3 | ŝ1 = s1, ŝ2 = s2) for each draw during

sampling [Mal22].

• CostsO(IR2) per matrix Uj per sample.

• Works well if I is low enough (many dense tensor applications), but performance

degrades for I ≥ 103.

Preprocessing Time Time for J Samples # Samples Required

O(NIR2) O(JNR2I) O(R/(εδ))
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Approach 4: Segment Tree Sampling (Ours)

• Our approach will require onlyO(NR2 log I) time per sample, after one-time

preprocessing costs ofO(IR2 +R3) per matrix.

• ForR ≈ 102, we achieve a sampling time that is practical for sparse tensor

decomposition with mode sizes in the tens of millions.

Preprocessing Time Time for J Samples # Samples Required

O(NIR2) O(NR3 + JNR2 log I) O(R/(εδ))

21/39



Key Sampling Primitive

q [i] := C−1〈h<kh
>
<k, Uk [i, :]

>
Uk [i, :], G>k〉

• Imagine we magically had all entries of q - how to sample? Initialize I bins, j-th has width

q [j].

• Choose random real r in [0, 1], find “containing bin” i such that

i−1∑
j=0

q [j] < r <
i∑

j=0

q [j]

22/39



Binary Tree Inversion Sampling

• Locate bin via binary search (truncated to

log(I/R) levels)

• Root: branch right iff
∑I/2

j=0 q [j] < r

• Level 2: branch right iff

I/2∑
j=0

q [j] +

3I/4∑
j=I/2

q [j] < r
U

(1)
1 U

(2)
1 U

(3)
1 U

(4)
1

Key: Can compute summations quickly if we cache information at each node!
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Caching Partial GramMatrices

Let an internal node v correspond to an interval of rows [S(v)...E(v)].

E(v)∑
j=S(v)

q [j] =

E(v)∑
j=S(v)

C−1〈h<kh
>
<k, Uk [j, :]

>
Uk [j, :], G>k〉

= C−1〈h<kh
>
<k,

E(v)∑
j=S(v)

Uk [j, :]
>
Uk [j, :], G>k〉

= C−1〈h<kh
>
<k, Uk [S(v) : E(v), :]

>
Uk [S(v) : E(v), :], G>k〉

:= C−1〈h<kh
>
<k, G

v, G>k〉

(1)

Can compute and storeGv for ALL nodes v in timeO(IR2), storage spaceO(IR). Use BLAS-3

syrk calls in parallel to efficiently construct the tree.
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Efficient Sampling after Caching

• At internal nodes, compute

C−1〈h<kh
>
<k, G

v, G>k〉 inO(R2) time (read

normalization constant from root)

• At leaves, spendO(R3) time to compute

remaining values of q. Can reduce to

O(R2 logR), see paper.

• Complexity per sample: O(NR2 log I)
(summed over all tensor modes).

U
(1)
1 U

(2)
1 U

(3)
1 U

(4)
1
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An Empirical Correctness Check
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Figure: Distribution Comparison forU1 � U2 � U3,Uj ∈ R8×8 initialized i.i.d. Gaussian.
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Remarks and Related Work

• The most comparable results to ours appear in work by Woodruff and Zandieh [WZ22],

who construct a leverage-score sampler with input-sparsity runtime.

• Their sampler can also be used for low-rank approximation, but hasO(N7) worst-case
scaling in the KRP dimension.

• The best existing oblivious algorithms for Khatri-Rao products require either:

• Ω(R2) rows to construct a subspace embedding [Ahl+20].
• More than input-sparsity runtime.

• Open Question: Is LSSmore powerful than oblivious embedding for Khatri-Rao

products, and can we prove a lower bound?
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Performance Measurements



High-Performance Parallel Sampling

• We want to execute J ∼ 50, 000
independent random walks down a full,

complete tree.

• At each node, execute a matrix-vector

multiplication to decide which

direction to branch.

• Solution: March down the tree one

level at a time, computing the

branches of ALL random walks using

batched GEMV / GEMM.

U
(1)
1 U

(2)
1 U

(3)
1 U

(4)
1
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Runtime Benchmarks (LBNL Perlmutter CPU)
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Figure: Time to construct sampler and draw J = 65, 536 samples. C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP

Threads, BLAS3 Construction, BLAS2 Sampling.
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Distortion, Ours vs. Approximate Sampling

We define the distortionD(S,A) of sketch S with respect to matrixA by

D(S,A) = κ(SQ)− 1

whereQ is any orthonormal basis for the column space ofA [Mur+23]. Distortion quantifies

the distance preservation property of a sketch.
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Figure: Sketch distortion as a function of KRP matrix countN and column countR, J = 65, 536. Green: our sampler. Blue: product

approximation by [LK22].
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Sparse Tensors from FROSTT

Tensor Dimensions NNZ

Uber 183× 24× 1.1K × 1.7K 3.3M
Enron 6.0K × 5.6K × 240K × 1.2K 54M
NELL-2 12K × 9.1K × 29K 77M
Amazon 4.8M × 1.8M × 1.8M 1.7B
Reddit 8.2M × 177K × 8.1M 4.7B

fit(T̃ , T ) = 1−

∥∥∥T̃ − T
∥∥∥
F

‖T ‖F
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Accuracy Comparison for Fixed Sample Count
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Figure: Sparse tensor ALS accuracy comparison for J = 216 samples, varied target ranks.
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STS-CP Makes Faster Progress to Solution
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Figure: Fit vs. ALS update time, Reddit tensor,R = 100.
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Performance at Scale [Bha+24a]
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Figure: Fit vs. time, Reddit (R = 100) and strong scaling (R = 25) for our randomized algorithms.
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Conclusions and References



Summary

• We exploited structure in the Khatri-Rao Product to build a leverage score sampler with

low polynomial complexity.

• Our implementation relies on well-optimized dense linear algebra primitives, exhibiting

strong practical performance in addition to our theoretical guarantees.

• This year, we extended our results to tensor-train core chains (find our poster at NeurIPS

2024!) by making key adaptations to our conditional-sampling procedure [Bha+24b].

• Try our code online: https://github.com/vbharadwaj-bk/fast_tensor_leverage.
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Questions?
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