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Introduction



Bedrock: Dense Linear Algebra

• Many algorithms in machine learning and scientific
computing rely on linear algebraic (LA) primitives.

• BLAS [Law+79] & LAPACK [And+92]: Enabled
non-specialists to use optimized dense LA kernels.

• SCALAPACK [Bla+97], MAGMA [TDB10], SLATE
[Gat+20] & many others: Extended capabilities to
massively parallel architectures and accelerators.

Figure 1: Frontier, the first US
exascale machine. Credit: OLCF at
ORNL, Wikimedia Commons CC2.0.
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Sparsity Introduces New Challenges

Consider a linear least-squares problem of the form min𝑋 ‖𝐴𝑋 − 𝐵‖𝐹 . What happens if:

• 𝐴 or 𝐵 has structural sparsity (most entries are zero)?

• 𝐴 is data-sparse (written as a Kronecker product, or related structure)?

• 𝐵 is only available on-demand, and we must induce sparsity to reduce the sampling
complexity?

Dense LA methods are often intractable! Need tailored algorithms and custom
computational kernels to achieve high performance.
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Randomization in Numerical Linear Algebra

• Randomized computing has a long history. Randomized linear algebra has seen
significant progress since 2008 (e.g. [RT08], Blendenpik [AMT10]) [Woo14].

• Key ingredient: sketching. Example for overdetermined LSTSQ: apply random
matrix 𝑆 with far fewer rows than columns, solve cheaper problem

min
𝑋

‖𝑆𝐴𝑋 − 𝑆𝐵‖𝐹

• Efforts are underway to standardize randomized linear algebra primitives [Mur+23].
Intersection of sparsity and RandNLA: open frontier.
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High-Level Contributions of this Work

Our goal: accelerate sparse LSTSQ problems using
randomization and communication avoiding (CA) parallel
algorithms. We will:

• Identify applications involving sparse linear
least-squares problems.

• Design novel randomized techniques and
parallelization strategies tailored to that sparsity.

• Deploy our methods on parallel architectures at scale.

Our Work

RandNLA 
Theory

Parallel & CA 
Algorithms

Sparsity-Tailored 
Methods
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Topics We Will Cover

1. Sketching linear least-squares problems in sparse Candecomp / PARAFAC
(Neurips’23; [BhMMGBD23]).

2. Distributed-memory randomized CP methods (Preprint, Arxiv; [BhMMBD23]).

3. CA-algorithms for sparse matrix completion (IPDPS’22; [BhBuDe22]).

4. Future work: sketching to accelerate the marginalized graph kernel, emerging
extensions of sketching for tensor trains.
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Fast Exact Leverage Score
Sampling from Khatri-Rao
Products



The Khatri-Rao Product

• The Khatri-Rao product (KRP, denoted ⊙) is the column-wise Kronecker product of
two matrices:

[𝑎 𝑏
𝑐 𝑑] ⊙ [𝑤 𝑥

𝑦 𝑧] =
⎡
⎢⎢⎢
⎣

𝑎𝑤 𝑏𝑥
𝑐𝑤 𝑑𝑥
𝑎𝑦 𝑏𝑧
𝑐𝑦 𝑑𝑧

⎤
⎥⎥⎥
⎦

• Our goal: efficiently solve an overdetermined linear least-squares problem

min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹

where 𝐴 = 𝑈1 ⊙ ... ⊙ 𝑈𝑁 with 𝑈𝑗 ∈ ℝ𝐼𝑗×𝑅.
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Motivating Application

This least-squares problem is the computational bottleneck in alternating least-squares
Candecomp / PARAFAC (CP) decomposition [KB09].

Figure 2: Subregion of Amazon sparse tensor and illustrated CP decomposition.

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition
rank 𝑅 ≈ 102. Assume 𝐼𝑗 = 𝐼 for all 𝑗 and 𝐼 ≥ 𝑅.
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Randomized Linear Least-Squares

• Sketch & Solve: Apply short-wide sketching matrix 𝑆 to both 𝐴 and 𝐵, solve reduced
problem

min𝑋̃ ∥𝑆𝐴𝑋̃ − 𝑆𝐵∥
𝐹

• Want an (𝜀, 𝛿) guarantee on solution quality: with high probability (1 − 𝛿),

∥𝐴𝑋̃ − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖

• Restrict 𝑆 to be a sampling matrix: selects and reweights rows from 𝐴 and 𝐵. How
do we downsample a Khatri-Rao product accurately AND efficently?
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Effect of Sampling Operator, Sparse Tensor Decomposition

min
𝑈𝑗

∥[⨀
𝑘≠𝑗

𝑈𝑘] ⋅ 𝑈⊤
𝑗 − mat(𝒯, 𝑗)⊤∥

𝐹

𝑈3

⊙

⋅

𝑈1

𝑈⊤
2

−

m
at

(𝒯
,2

)

min
𝑈2

𝐹

𝑈2

∶=
mat(𝒯, 2)

⋅
𝑈3

⊙

⋅

𝑈1

𝐺+

MTTKRP
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Our Contributions [BhMMGBD23]

Method Source Round Complexity (𝑂̃ notation)

CP-ALS [KB09] 𝑁(𝑁 + 𝐼)𝐼𝑁−1𝑅
CP-ARLS-LEV [LK22] 𝑁(𝑅 + 𝐼)𝑅𝑁/(𝜀𝛿)
TNS-CP [Mal22] 𝑁3𝐼𝑅3/(𝜀𝛿)
GTNE [MS22] 𝑁2(𝑁1.5𝑅3.5/𝜀3 + 𝐼𝑅2)/𝜀2

STS-CP Ours 𝑁(𝑁𝑅3 log 𝐼 + 𝐼𝑅2)/(𝜀𝛿)

• We build a data structure with runtime logarithmic in the height of the KRP and
quadratic in 𝑅 to sample from leverage scores of 𝐴.

• Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP
decomposition than recent SOTA methods (and even greater advantages for sparse
tensors).
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Leverage Score Sampling

We will sample rows i.i.d. from 𝐴 according to the leverage score distribution on its rows.
Given reduced SVD 𝐴 = 𝑈Σ𝑉 ⊤, the leverage score ℓ𝑖 of row 𝑖 is

ℓ𝑖 = ‖𝑈 [𝑖, ∶]‖2 .

Theorem (Leverage Score Sampling Guarantees, [Mal22])
Suppose 𝑆 ∈ ℝ𝐽×𝐼 is a leverage-score sampling matrix for 𝐴 ∈ ℝ𝐼×𝑅, and define

𝑋̃ ∶= arg min
𝑋̃

∥𝑆𝐴𝑋̃ − 𝑆𝐵∥
F

If 𝐽 ≳ 𝑅 max(log(𝑅/𝛿), 1/(𝜀𝛿)), then with probability at least 1 − 𝛿,

∥𝐴𝑋̃ − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹 .
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Interpretation of Leverage Scores

When 𝐴 has 1 column, leverage scores are proportional to squared distance from origin.

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0 100 low leverage points ( = c)
20 high leverage points ( = 25c)
Least-Squares Best Fit

Figure 3: A univariate regression problem with low and high leverage points (intercept constrained to be 0).
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Interpretation of Leverage Scores

In general, leverage scores of 𝐴 quantify influence that each row has on the solution,
capture correlation of rows of 𝐴 with rows of Σ−1𝑉 ⊤.
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Figure 4: Leverage scores of (𝑥, 𝑦, 0) triples from a multivariate normal distribution. Left: components of Σ−1𝑉 ⊤ shown. Right:
the red point has greater influence than the blue point (both equidistant from (0, 0)).
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Interpretation of Leverage Scores

• Leverage score sampling captures the geometry of the column space of 𝐴.

• Rigorously: sampling i.i.d. with leverage score probabilities leads to an optimal
[DM20] sample complexity to construct an ℓ2-subspace embedding matrix 𝑆. W.h.p
simultaneously for ALL vectors 𝑥 ∈ ℝ𝑅,

(1 − ̃𝜀) ‖𝐴𝑥‖2 ≤ ‖𝑆𝐴𝑥‖2 ≤ (1 + ̃𝜀) ‖𝐴𝑥‖2

• In turn, an ℓ2-S.E. guarantees that our sketched solution has close-to-optimal residual
with respect to the original problem.
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Prior Work

Problem: Cost to compute all leverage scores exactly is identical to runtime of QR
decomposition. Defeats the purpose of sampling!

• (SPALS [Che+16]): Sample rows according to approximate leverage scores of 𝐴.
Worst-case exponential in 𝑁 to achieve (𝜀, 𝛿) guarantee.

• (CP-ARLS-LEV [LK22]): Similar approximation, hybrid random-deterministic sampling
strategy and practical improvements.

• (TNS-CP [Mal22]): Samples implicitly from exact leverage distribution with
polynomial complexity to achieve (𝜀, 𝛿) guarantee, but linear dependence on 𝐼 for
each sample. We want to accelerate this algorithm.
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Implicit Leverage Score Sampling

• For 𝐼 = 107, 𝑁 = 3, matrix 𝐴 has 1021 rows. Can’t even index rows with 64-bit
integers. Instead: use identity ℓ𝑖 = 𝐴 [𝑖, ∶] (𝐴⊤𝐴)+𝐴 [𝑖, ∶]⊤.

• Draw a row from each of 𝑈1, ..., 𝑈𝑁 , return their Hadamard product.

[0.1   0.5  -0.9   ... 0.3] [0.0   0.1  0.2   ... 0.9] [-0.8   0.3  0.3   ... -0.9] [-0.8   -0.1  0.5   ... 0.7]

U1
U2 U3 U4

• Let ̂𝑠𝑗 be a random variable for the row index drawn from 𝑈𝑗. Assume ( ̂𝑠1, ..., ̂𝑠𝑁)
jointly follows the leverage score distribution on 𝑈1 ⊙ ... ⊙ 𝑈𝑁 .
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The Conditional Distribution of ̂𝑠𝑘

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺

𝐺>𝑘 𝐺+

⊛

⊛

PINV

𝑠1

𝑠2 𝑠3

ℎ⊤
<𝑘⊛

Theorem

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘) ∝ ⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑠𝑘, ∶]⊤ 𝑈𝑘 [𝑠𝑘, ∶], 𝐺>𝑘⟩
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Key Sampling Primitive

𝑞 [𝑖] ∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑖, ∶]⊤ 𝑈𝑘 [𝑖, ∶], 𝐺>𝑘⟩

• Can’t compute 𝑞 entirely - would cost 𝑂(𝐼𝑅2) per sample per mode.

• Imagine we magically had all entries of 𝑞 - how to sample? Initialize 𝐼 bins, 𝑗’th has
width 𝑞 [𝑗].

• Choose random real 𝑟 in [0, 1], find “containing bin” 𝑖 such that

𝑖−1
∑
𝑗=0

𝑞 [𝑗] < 𝑟 <
𝑖

∑
𝑗=0

𝑞 [𝑗]
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Binary Tree Inversion Sampling

• Locate bin via binary search (truncated to
log(𝐼/𝑅) levels)

• Root: branch right iff ∑𝐼/2
𝑗=0 𝑞 [𝑗] < 𝑟

• Level 2: branch right iff

𝐼/2
∑
𝑗=0

𝑞 [𝑗] +
3𝐼/4
∑

𝑗=𝐼/2
𝑞 [𝑗] < 𝑟

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1

Key: Can compute summations quickly if we cache information at each node!
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Caching Partial Gram Matrices

Let an internal node 𝑣 correspond to an interval of rows [𝑆(𝑣)...𝐸(𝑣)].

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑞 [𝑗] =

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘,

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶]⊤ 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶], 𝐺>𝑘⟩

∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝐺𝑣, 𝐺>𝑘⟩

(1)

Can compute and store 𝐺𝑣 for ALL nodes 𝑣 in time 𝑂(𝐼𝑅2), storage space 𝑂(𝐼𝑅). Use
BLAS-3 syrk calls in parallel to efficiently construct the tree.
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Efficient Sampling after Caching

• At internal nodes, compute
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝐺𝑣, 𝐺>𝑘⟩ in 𝑂(𝑅2) time (read
normalization constant from root)

• At leaves, spend 𝑂(𝑅3) time to compute
remaining values of 𝑞. Can reduce to
𝑂(𝑅2 log 𝑅), see paper.

• Complexity per sample: 𝑂(𝑁𝑅2 log 𝐼)
(summed over all tensor modes).

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1
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High-Performance Parallel Sampling, Approach 1

• We want to execute 𝐽 ∼ 50, 000
independent random walks down a
full, complete tree. At each node,
execute a matrix-vector
multiplication to decide which
direction to branch.

• Approach 1: Assign a thread team
to execute random walks
independently. Proudly parallel, no
data races.

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1
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High-Performance Parallel Sampling, Approach 2

• Issues: irregular memory access
pattern on CPU, not optimal for a
single GPU thread to execute a
BLAS call.

• Approach 2: March down the tree
one level at a time, computing the
branches of ALL random walks with
a batched GEMV / GEMM.

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1
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Runtime Benchmarks (LBNL Perlmutter CPU)
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Figure 5: Time to construct sampler and draw 𝐽 = 65, 536 samples. C++ Implementation Linked to OpenBLAS. 1 Node, 128
OpenMP Threads, BLAS3 Construction, BLAS2 Sampling.
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Distortion, Ours vs. Approximate Leverage Score Sampling

Define the distortion 𝐷(𝑆, 𝐴) of sketch 𝑆 with respect to matrix 𝐴 by

𝐷(𝑆, 𝐴) = 𝜅(𝑆𝑄) − 1

where 𝑄 is any orthonormal basis for the column space of 𝐴 [Mur+23]. Distortion
quantifies the distance preservation property of a sketch.
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Figure 6: Sketch distortion as a function of KRP matrix count 𝑁 and column count 𝑅, 𝐽 = 65, 536. Green: our sampler. Blue:
product approximation by [LK22].
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Accuracy Comparison for Fixed Sample Count
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Figure 7: Sparse tensor ALS accuracy comparison for 𝐽 = 216 samples, varied target ranks.
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STS-CP Makes Faster Progress to Solution
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Figure 8: Fit vs. ALS update time, Reddit tensor, 𝑅 = 100.
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Takeaways: Faster Leverage Score Sampling from Khatri-Rao Products

• We accelerated sampling from the Khatri-Rao product by devising a novel data
structure and a high-performance implementation.

• We demonstrated convincing speedups and accuracy benefits over CP-ARLS-LEV
[LK22], an algorithm that approximates the leverage scores.

• Up next: distributed-memory formulations of both our algorithm and CP-ARLS-LEV.
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High-Performance Randomized
CP Decomposition at Scale



Sparse Tensors from FROSTT

Tensor Dimensions NNZ

Uber 183 × 24 × 1.1𝐾 × 1.7𝐾 3.3𝑀
Amazon 4.8𝑀 × 1.8𝑀 × 1.8𝑀 1.7𝐵
Patents 46 × 239𝐾 × 239𝐾 3.6𝐵
Reddit 8.2𝑀 × 177𝐾 × 8.1𝑀 4.7𝐵

• Sparse tensors may have billions of nonzero entries, mode sizes in the tens of
millions [Smi+17].

• Randomized algorithms okay in shared-memory, but existing codes cannot
compete with classic distributed-memory implementations [Smi+15; Kan+12].
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Our Contributions [BhMMBD23]

• We give high-performance
implementations of STS-CP and
CP-ARLS-LEV scaling to thousands of
CPU cores.

• Up to 11x speedup over SPLATT.

• Several communication / computation
optimizations unique to randomized
CP decomposition.
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Figure 9: Accuracy vs. time, Reddit tensor, 𝑅 = 100, 512
cores / 4 Perlmutter CPU nodes, 4.7 billion nonzeros.
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Methodology

• We distribute STS-CP and CP-ARLS-LEV [LK22] with very distinct communication /
computation patterns, each with varying time / accuracy tradeoffs.

• We tailor the communication schedule to randomized CP decomposition to eliminate
Reduce-scatter collectives, achieving better load balance in the process.

• We use a hybrid of CSC format for nonzero lookups and CSR format to enable
race-free thread parallelism. Key primitive: sparse transpose.
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Factor and Sparse Matrix Layout

• Processors arranged in a hypercube.

• Factor matrices 𝑈1, ..., 𝑈𝑁 distributed by block
rows. Assume that all processors redundantly
compute 𝑈⊤

𝑗 𝑈𝑗 for all 𝑗 (product is gram matrix 𝐺
of 𝐴).

• Each processor owns a block of the sparse
tensor. Randomly permute modes to
load-balance.
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Bulk-Synchronous Randomized ALS Update

1. Sampling and All-gather: Sample rows of 𝑈≠𝑗, Allgather the rows to processors
who require them.

2. Local Computation: Extract the corresponding nonzeros from the local tensor,
execute the downsampled MTTKRP.

3. Reduction and Postprocessing: Reduce the accumulator of the sparse-dense
matrix multiplication across processors, if necessary, and post-process the factor.
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Distribution of Distinct Sampling Algorithms

Sampler Compute Messages Words Communicated

d-CP-ARLS-LEV 𝐽𝑁/𝑃 𝑃 𝑃
d-STS-CP 𝐽𝑅2 log 𝐼/𝑃 𝑃 log 𝑃 𝐽𝑅 log 𝑃 /𝑃

• CP-ARLS-LEV approximates the leverage scores with lower computation /
communication overhead. Accuracy degrades at high rank.

• STS-CP samples from the exact leverage score distribution, requiring higher
sampling time.

• Problem: How to sample when factors distributed by block rows?
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d-CP-ARLS-LEV

• Key Idea: Approximate the leverage scores of 𝐴 by the product of leverage scores
on each factor matrix 𝑈𝑖.

• Let 𝑈 (𝑝𝑗)
𝑖 be the block row of 𝑈𝑖 owned by processor 𝑝𝑗. Leverages scores of this

block given by
diag (𝑈 (𝑝𝑗)

𝑖 𝐺+𝑈 (𝑝𝑗)⊤
𝑖 )

• Computed locally on each processor without communication. Sampling requires (in
expectation) only a small constant number of words communicated.

• Drawback: Accuracy degrades for high 𝑁 or 𝑅.
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d-STS-CP

• Samples from exact leverage score
distribution by sampling from each of
𝑈1, ..., 𝑈𝑁 in sequence (excluding 𝑈𝑗).

• Execute random walk on binary tree to find
the row index for each 𝑈𝑗. Node 𝑣 caches
“partial Gram matrix ” 𝐺𝑣.

• At each node, compute ℎ⊤𝐺𝑣ℎ (where ℎ is
unique to each sample) to decide whether
to branch left / right.

𝑈(𝑝1)
1 𝑈(𝑝2)

1 𝑈(𝑝3)
1 𝑈(𝑝4)

1
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d-STS-CP Parallelization Scheme

𝐿

𝑝1, 𝑝2, 𝑝3, 𝑝4

𝑝1, 𝑝2 𝑝3, 𝑝4

𝑝1 𝑝2 𝑝3 𝑝4

Sample
Owner

Step 1: 𝑝2

Step 2: 𝑝3

Step 3: 𝑝3

Local Compute

𝑈(𝑝1)
1 𝑈(𝑝2)

1 𝑈(𝑝3)
1 𝑈(𝑝4)

1
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Randomization-Tailored Communication Schedule

1
2
3
4
5
6
7
8

1
2

5
6

7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8
4

3
1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

=

Tensor Stationary MTTKRP

1
2
3
4
5
6
7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8

=

Accumulator Stationary MTTKRPInitial Data Distribution

All-gather Downsampled Matrix Reduce-Scatter Redistribute Downsampled Tensor Stationary

1
2
3
4
5
6
7
8

1 2 5 6 3 4 7 8

1
2

5
6

7
8

4
3

Schedule Words Communicated / Round

Non-Randomized TS 2𝑁𝑅 (∏𝑁
𝑘=1 𝐼𝑘/𝑃)

1/𝑁

Sampled TS 𝑁𝑅 (∏𝑁
𝑘=1 𝐼𝑘/𝑃)

1/𝑁

Sampled AS 𝐽𝑅𝑁(𝑁 − 1)
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Speedup and Scaling on Large Sparse Tensors
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Figure 10: Speedup over SPLATT and strong scaling for our randomized algorithms.
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Comparison of Communication Schedules
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Figure 11: Runtime breakdown for tensor-stationary vs. accumulator-stationary communication schedules.
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Takeaways: Distributed-Memory Randomized CP Algorithms

• We proposed the first distributed-memory implementation of two sampling-based,
sparse CP algorithms.

• We optimized our algorithms to avoid communication in both the sampling and
MTTKRP phases.

• Our method scales to thousands of CPU cores with significant speedups over existing
SOTA sparse tensor decomposition software.
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Communication-Avoiding
Algorithms for Matrix
Completion



Matrix / Tensor Completion vs. Factorization

• Sparse Tensor Completion: Zero indicates unobserved data. Want to fit model only
to observed entries, expect it to generalize. Distinct from factorization, where zeros
are “true zeros”.

User 1

User 2

User 3

M
ov

ie
 1

M
ov

ie
 2

M
ov

ie
 3

• For simplicity, we will focus on the matrix case. Let 𝑆 ∈ ℝ𝑚×𝑛 be the matrix we want
to factor and 𝐴 ∈ ℝ𝑚×𝑟, 𝐵 ∈ ℝ𝑛×𝑟 be embedding matrices.
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Collaborative Filtering

• Factorization: Solve min𝐴,𝐵 ∥𝑆 − 𝐴𝐵⊤∥𝐹 .

• Completion: Solve min𝐴,𝐵 ∥𝑆 − 𝑀 ⊛ (𝐴𝐵⊤)∥𝐹 , where 𝑀 is a binary mask with the
same sparsity pattern as 𝑆.

• 𝑀 ⊛ (𝐴𝐵⊤) is called sampled dense-dense matrix multiplication.

(    )�M A
BT
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ALS Formulation

Cheap, first-pass algorithm (can be modified to impose nonnegativity): alternating
least-squares.

• Keep 𝐵 fixed, solve for 𝐴:

𝐴 ∶= min
𝑋

∥𝑀 ⊛ (𝑋𝐵⊤) − 𝑆∥𝐹

• In standard form, we get an independent LSTSQ problem for each output row of 𝐴
(each 𝐸𝑗 selects nonzero indices of 𝑀 [𝑗, ∶]):

vec(𝐴) ∶= argmin𝑥

∥
∥
∥
∥
∥

⎡
⎢⎢⎢
⎣

𝐸1𝐵
𝐸2𝐵

⋱
𝐸𝑚𝐵

⎤
⎥⎥⎥
⎦

𝑥 − vec𝑛𝑧(𝑆)
∥
∥
∥
∥
∥2
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Our Contributions [BhBuDe22]

• Prior work: The ALS algorithm for matrix completion can be reformulated to depend
entirely on the SDDMM and SpMM kernels (running in a conjugate-gradient loop)
[CZ13; Nis+18].

• We build communication-avoiding, distributed-memory implementations of the
SDDMM and SpMM kernels. We use them in sparse matrix factorization on
hundreds of Cori CPU nodes.

• These can also be used for specific graph neural network architectures with
self-attention (similar to CAGNET [TYB20]).
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Existing Algorithms for SpMM
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SpMM / SDDMM Duality

SDDMM and SpMM have identical data access patterns: every nonzero (𝑖, 𝑗) ∈ nz(𝑆)
requires an interaction between row 𝑖 of 𝐴 and row 𝑗 of 𝐵.

1: procedure SpMM(S, B)
2: Initialize 𝐴 ∶= 0;
3: for (𝑖, 𝑗) ∈ nz(𝑆) do
4: 𝐴 [𝑖, ∶] += 𝑆 [𝑖, 𝑗] 𝐵 [𝑗, ∶]
5: return 𝐴

1: procedure SDDMM(S, A, B)
2: Initialize 𝑅 ∶= 0;
3: for (𝑖, 𝑗) ∈ nz(𝑆) do
4: 𝑅 [𝑖, 𝑗] = 𝑆 [𝑖, 𝑗] (𝐴 [𝑖, ∶] ⋅ 𝐵 [𝑗, ∶])
5: return 𝑅

Observation: Every distributed algorithm for SpMM can be converted into an
algorithm for SDDMM, and vice-versa.
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Converting SpMM Algorithms to SDDMM Algorithms

Consider any distributed algorithm for SpMM that performs no replication. For all 𝑘 ∈ [1, 𝑟],
the algorithm must (at some point)

• Co-locate 𝑆 [𝑖, 𝑗] , 𝐴 [𝑖, 𝑘] , 𝐵 [𝑗, 𝑘] on a single processor
• Perform the update 𝐴 [𝑖, 𝑘] += 𝑆 [𝑖, 𝑗] 𝐵 [𝑗, 𝑘]

Transform the algorithm as follows:

1. Change the input sparse matrix 𝑆 to an output initialized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update 𝑆 [𝑖, 𝑗] += 𝐴 [𝑖, 𝑘] 𝐵 [𝑗, 𝑘]

48



Dealing with Replication

Inputs are typically replicated via broadcasts, outputs via reduction. To handle this:

• Replace initial braodacasts of inputs with terminal reductions.
• Replace terminal reductions of outputs with initial broadcasts.

The resulting algorithm performs SDDMM up to multiplication with the original
values in 𝑆.

We performed a communication analysis for several variants of SpMM / SDDMM, as well
as optimizations that fuse the two kernels back-to-back.
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Strong Scaling on LBNL Cori
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Figure 12: Strong scaling Experiments for 5 back-to-back SDDMM and SpMM calls on Cori CPU nodes.
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Applications: Collaborative Filtering and GATs
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Figure 13: Application benchmarks for our distributed SDDMM / SpMM implementations
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Takeaways: Communication Avoiding SDDMM / FusedMM Kernels

• We devised a procedure to convert well-analyzed SpMM algorithms into SDDMM
algorithms.

• We analyzed the communication costs of a pair of back-to-back SpMM / SDDMM calls
and demonstrated significant speedups at scale over the implementation in PETSc.

• We used our methods to accelerate ALS matrix completion on some of the largest
matrices in the Suitesparse collection.
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Future Work



Work in Progress

Currently exploring three thrusts:

• Extensions of our CP sampling strategy to other tensor formats (mainly tensor trains).

• Application of sketching to domain science problems, such as Electrical Impedence
Tomography (EIT).

• Accelerating other problems that involve tensor product structure, such as the
marginalized graph kernel.
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Extension of Implicit Sampling to Tensor Train Decomposition

The tensor-train decomposition represents a tensor 𝒯 as a contraction between order-3
“tensor-cores”.

Tensor Train

𝑗’th core has dimensions 𝑅𝑗 × 𝐼𝑗 × 𝑅𝑗+1. Represents a tensor with 𝐼𝑁 elements using
𝑂(𝑁𝐼𝑅2) space when all rank are equal.
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Iterative TT Optimization Problems

Reshaped TensorDesign Matrix
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Sampling from 𝐴<𝑗

Theorem (Orthonormal Subchain Leverage Sampling)
There exists a data structure that costs 𝑂(𝐼𝑅3) per tensor train core to build / update.
For any 1 < 𝑗 ≤ 𝑁 , the structure can sample a row from 𝐴<𝑗 proportional to its squared
row norm in time

𝑂((𝑗 − 1)𝑅2 log 𝐼)

Apply same binary tree trick to the left matricizations of each core 𝒜𝑗, exploit
orthonormality to reduce complexity. Accelerates TT-ALS, potentially useful in other
contexts.
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Tensor Structure in PDE-Inverse Problems

Consider a 2D slice of conducting tissue. A source voltage is applied and the potential is
measured at several pairs of boundary points.

Figure 14: CT Image of thorax with EIT equipotential lines. Image credit Andy Adler, CC3.0 unported, Wikimedia Commons.

Goal: determine conductivity in interior of tissue. Solve (𝑈11 ⊙ 𝑈12 + 𝑈21 ⊙ 𝑈22)𝑥 = 𝑏
where 𝑈11, 𝑈12, 𝑈21, 𝑈22 depend on the geometry of the tissue / boundary, 𝑏 is a
measurement taken for every source / sink pair [Che+20].
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Sketching for the Marginalized Graph Kernel

The marginalized graph kernel computes a similarity measure between two (labeled,
weighted) graphs 𝐺1, 𝐺2 by finding the stationary distribution of a random walk on their
Kronecker Product Graph [Vis+10].

=

Graph 1 Graph 2
Kronecker Product

For the inner product edge kernel: solve (∑𝑁
𝑖=1 𝐴𝑖 ⊗ 𝐵𝑖) 𝑥 = 𝑝 where 𝐴𝑖, 𝐵𝑖 have the

sparsity structures of adjacency matrices of 𝐴1, 𝐴2. Potentially a ripe application for
Tensorsketch, low-rank approximation.
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Conclusions and
Acknowledgements



Summary

• We exhibited algorithms for ALS CP decomposition that have lower asymptotic
complexity and faster time-to-solution compared to SOTA competitors.

• We showed that randomized methods are practical on thousands of CPU cores and
billion-scale sparse tensors, offering up to 11x speedup over carefully-engineered
deterministic algorithms

• We optimized the SDDMM kernel involved in sparse matrix factorization based on
proven algorithms for SpMM, exploiting algorithmic duality between the two kernels.

• Planned work this year: investigate other regression problems that involve tensor
structure, particularly scientific applications.
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Leverage Score Sampling Proof Sketch

Theorem (Structural Conditions for LSTSQ, [DKM06])
Let 𝑄 be a basis for the column-space of 𝐴. Suppose that a sketching matrix 𝑆 satisfies
the following two deterministic structural conditions:

• (S1) Approximate Isometry: 𝜎min(𝑆𝑄) ≥ 1/
√

2
• (S2) Minimal Junk: ∥𝑄⊤𝑆⊤𝑆𝐵⊥∥2

𝐹 ≤ 𝜀 ∥𝐵⊥∥2
𝐹 /2

Then the sketched solution 𝑋̃ satisfies

∥𝐴𝑋̃ − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹 .

Main Proof Idea: Show, with probability ≥ (1 − 𝛿), that a leverage score sketch satisfies
these two conditions.
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Leverage Score Sampling Proof Sketch

• (S1) holds by the well-known ℓ2-subspace embedding property of leverage score
sketches [Woo14], with probability ≥ 1 − 𝛿/2 for high enough sample count.

• (S2) holds by an approximate matrix-multiplication argument [DKM06] (with one-sided
information) with probability ≥ 1 − 𝛿/2.

∥𝑄⊤𝑆⊤𝑆𝐵⊥∥2
𝐹 = ∥0 − 𝑄⊤𝑆⊤𝑆𝐵⊥∥2

𝐹

= ∥𝑄⊤𝐵⊥ − 𝑄⊤𝑆⊤𝑆𝐵⊥∥2
𝐹

• Use a union bound to guarantee that both hold with probability ≥ 1 − 𝛿. Will sketch
the proof of (S1).
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Leverage Score Sampling Gives an ℓ2-SE Proof Sketch

Proof follows a version by David Woodruff (we adapt it to our notation and drop the 𝛽
parameter). Let 𝐴 = 𝑄Σ𝑉 ⊤; we need a matrix Chernoff result.

Theorem (Matrix Chernoff, [Woo14])
Let 𝑋1, ..., 𝑋𝐽 be independent copies of a symmetric random matrix 𝑋 ∈ ℝ𝑅×𝑅 satisfying

1. E [𝑋] = 0,
2. ‖𝑋‖2 ≤ 𝛾,
3. ∥E [𝑋⊤𝑋]∥2 ≤ 𝑇 ≤ 𝐽2.

Let 𝑊 = 1
𝐽 ∑𝐽

𝑖=1 𝑋𝑖. Then for any ̃𝜀 > 0,

Pr [‖𝑊‖2 > ̃𝜀] ≤ 2𝑅 exp (−𝐽 ̃𝜀2/(2𝑇 + 2𝛾 ̃𝜀/3))
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Leverage Score Sampling Gives an ℓ2-SE Proof Sketch

Want to show, for appropriate parameters 𝐽, 𝛾, 𝜀, that 1√
2 ≤ 𝜎2

𝑖 (𝑆𝑈) w.h.p. (1 − 𝛿). Let
𝑧𝑖 = (𝑆𝑈)⊤

𝑖∶ , 𝑞𝑗 = 𝑄⊤
𝑗∶ and choose

𝑝𝑗 ∶= ℓ𝑗/𝑅 ∀𝑗

𝑋𝑖 ∶= 𝐼 − 𝑧𝑖𝑧⊤
𝑖 /𝑝𝑖

𝛾 ∶= 1 + 𝑅

̃𝜖 ∶= 1 − 1/
√

2

𝑇 ∶= 𝑅 − 1

Easy to verify that E [𝑋] = 0, need to check conditions (2) and (3) of the Chernoff bound.
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Leverage Score Sampling Gives an ℓ2-SE

Condition 2: ‖𝑋‖2 ≤ 𝛾 implies max𝑗∈[𝐼] ∥𝐼 − 𝑞𝑗𝑞⊤
𝑗

𝑝𝑗
∥ ≤ 𝛾. For any 𝑗, we have

∥𝐼 −
𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

∥
2

≤ ‖𝐼‖2 + ∥
𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

∥
2

= 1 +
𝑅 ∥𝑞𝑗𝑞⊤

𝑗 ∥2

∥𝑞𝑗∥
2
2

= 1 + 𝑅
= 𝛾

Crucially, this choice for 𝑝𝑗 allows the minimal choice 1 + 𝑅 for 𝛾.
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Leverage Score Sampling Gives an ℓ2-SE

Condition 3: We derive

E [𝑋⊤𝑋] =
𝐼

∑
𝑗=1

𝑝𝑗(𝐼 − 𝑞𝑗𝑞⊤
𝑗 /𝑝𝑗)(𝐼 − 𝑞𝑗𝑞⊤

𝑗 /𝑝𝑗)

=
𝐼

∑
𝑗=1

𝑝𝑗𝐼 − 2
𝐼

∑
𝑗=1

𝑝𝑗𝑞𝑗𝑞⊤
𝑗 /𝑝𝑗 +

𝐼
∑
𝑗=1

𝑝𝑗𝑞𝑗𝑞⊤
𝑗 𝑞𝑗𝑞⊤

𝑗
𝑝2

𝑗

= 𝐼 − 2𝐼 +
𝐼

∑
𝑗=1

𝑞𝑗𝑞⊤
𝑗 𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

= 𝐼 − 2𝐼 +
𝐼

∑
𝑗=1

𝑅𝑞𝑗𝑞⊤
𝑗

= (𝑅 − 1)𝐼

So ∥E [𝑋⊤𝑋]∥2 = 𝑅 − 1 ≤ 𝐽2.
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Leverage Score Sampling Gives an ℓ2-SE

Evaluating the Chernoff guarnatee, we ignore ̃𝜖 since it is a constant. We want

exp (−𝐽 ̃𝜀2/(2𝑇 + 2𝛾 ̃𝜀/3)) ≤ 𝛿

𝐽/(2𝑅 + 2𝑅/3)) ≥ Ω (log 𝑅
𝛿 )

Setting 𝐽 = Ω (𝑅 log 𝑅
𝛿 ) causes the failure probability to fall below the threshold.
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The Normal Equations in Tensor Decomposition

• The normal equations are widely used for ALS CP decomposition [KB09] despite
squaring the condition number.

• QR decomposition of a KRP is more difficult to compute (but only slightly) [Min+23]:

𝐴 ∶= 𝑈1 ⊙ ... ⊙ 𝑈𝑁

= (𝑄1𝑅1) ⊙ ... ⊙ (𝑄𝑁𝑅𝑁)
= (𝑄1 ⊗ ... ⊗ 𝑄𝑁) ⋅ (𝑅1 ⊙ ... ⊙ 𝑅𝑁)
= (𝑄1 ⊗ ... ⊗ 𝑄𝑁) ⋅ 𝑄tail ⋅ 𝑅tail

(2)

• QR formulation useful for lower-precision decomposition, adversarial tensors
[Min+23], e.g. sin(𝑥1 + ... + 𝑥𝑁).
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Why Don’t We Use the QR Formulation?

• QR Decomposition not useful for leverage score sampling. 𝑅𝑁 samples required to
sketch 𝑄1 ⊗ ... ⊗ 𝑄𝑁 , computation of 𝑄tail introduces exponential cost in 𝑁 .

• Leverage score computation robust to numerical error (just take slightly more
samples).

• For our applications, we can sacrifice some accuracy.
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Backup Slides, Deck 2:
Randomized Distributed CP
Decomposition



d-STS-CP Parallelization Scheme

• Matrices 𝐺𝑣 replicated log 𝑃 times. Each processor stores data on path from leaf to
root.

• Initialization: Each sample assigned arbitrarily to a processor (along with
corresponding sample vectors ℎ).

• At Each Node: Branching decision made for each sample, Alltoallv computed to
reorganize sample vectors.

• Drawback: Repeated Alltoallv calls are expensive!
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Non-Randomized Communication Analysis

• Let processor grid dimensions be
𝑃1 × ... × 𝑃𝑁 .

• All-gather + Reduce-Scatter Costs:

2
𝑁

∑
𝑘=1

𝐼𝑅/𝑃𝑘

• Cost Under Optimal Grid:

2𝑁𝑅𝐼
𝑃 1/𝑁
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Downsampled Tensor-Stationary MTTKRP

• Reduce-scatter cost is unchanged by
sampling.

• Minimum communication:

𝑁𝑅𝐼
𝑃 1/𝑁

• Drops at most a constant factor
compared to non-randomized ALS
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Downsampled Accumulator-Stationary MTTKRP

• Eliminate reduce-scatter by gathering
sampled rows to all processors,
redistributing sampled nonzeros.

• Communication Cost:

𝐽𝑅𝑁(𝑁 − 1) + 3
𝑃

𝑁
∑
𝑗=1

nnz(mat(𝒯, 𝑗)𝑆⊤
𝑗 ).

• Avoid retransmitting nonzeros by storing
𝑁 different matricizations of the tensor.
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Tensor-Stationary MTTKRP Load Balance

• We use random permutations of each
tensor mode to evenly distribute
nonzeros & samples to processors.

• Theoretical model: each sampled
column has 𝑞 nonzeros with row i.i.d.
uniform.

• TS Load Balance: 𝐽 balls into 𝑃 1−1/𝑁

bins (each ball here is a column).

=
1 2

3 4
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Accumulator-Stationary MTTKRP Load Balance

• AS Load Balance: 𝐽𝑞 balls into 𝑃 bins.

• Here, each ball is a nonzero entry.
This distibution has better load
balance when 𝑞 is high.

=

1

2

3

4
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Load Balance
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Figure 15: Load imbalance for tensor-stationary vs. accumulator stationary schedules as a function of MPI rank count.
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Local Computation: SpMTTKRP is SpMM

min
𝑈𝑗

∥[⨀
𝑘≠𝑗

𝑈𝑘] ⋅ 𝑈⊤
𝑗 − mat(𝒯, 𝑗)⊤∥

𝐹

𝑈3

⊙

⋅

𝑈1

𝑈⊤
2

−

m
at

(𝒯
,2

)

min
𝑈2

𝐹

𝑈2

∶=
mat(𝒯, 2)

⋅
𝑈3

⊙

⋅

𝑈1

𝐺+

MTTKRP
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Matricized Tensor Storage Format

• CSC: Easy to look up nonzeros, but need atomics when accumulating to output buffer
(with multiple threads)

• CSR: No data races, but difficult to select nonzeros.

• Solution: Use CSC for lookup, sparse transpose into CSR.
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Sampling and Sparse Transpose Operation

mat(𝒯, 2)

mat(𝒯, 2)𝑆⊤

⋅

𝑆(𝑈3 ⊙ 𝑈1)

∶=𝑡1
𝑡2
𝑡3

Drawback: Need to store 𝑁 copies of the sparse tensor, but we do this anyway to avoid
communication.
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Weak Scaling

• Weak scaling for non-randomized CP: increase target rank 𝑅 and processor count
proportionally, measure runtime.

• Problems for Randomized CP:
• Nonzero count selected from sparse tensor varies.
• Need higher sample counts at higher ranks to maintain accuracy.

• Solution: Benchmark STS-CP with fixed sample count to maintain accuracy (as
much as possible) for a fixed sample count, measure throughput instead:

Throughput = nnz selected in MTTKRP
Runtime
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Experimental Platform

• Experiments conducted on up to 16
nodes / 2048 CPU cores on NERSC
Perlmutter at LBNL.

• Hybrid OpenMP / MPI implementation
in C++, Python wrappers using
Pybind11.

• Baseline : SPLATT, a highly-optimized
CP decomposition library.

Figure 16: LBNL Perlmutter, an HPE Cray Supercomputer
(#12 on the Nov’23 Top500).
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Weak Scaling
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Figure 17: Throughput as a function of increasing target rank and node count.
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