
Exploiting Sparsity and Randomness to
Accelerate Linear Least-Squares at Scale

Vivek Bharadwaj, Qualifying Examination

Exam Committee: Katherine Yelick (Chair), James Demmel, Aydın Buluç, Michael Lindsey

Date & Time: January 17, 2024, 12pm PST

Location: Room 510, Soda Hall

Introduction

Bedrock: Dense Linear Algebra

• Many algorithms in machine learning and scientific
computing rely on linear algebraic (LA) primitives.

• BLAS [Law+79] & LAPACK [And+92]: Enabled
non-specialists to use optimized dense LA kernels.

• SCALAPACK [Bla+97], MAGMA [TDB10], SLATE
[Gat+20] & many others: Extended capabilities to
massively parallel architectures and accelerators.

Figure 1: Frontier, the first US
exascale machine. Credit: OLCF at
ORNL, Wikimedia Commons CC2.0.

1

Sparsity Introduces New Challenges

Consider a linear least-squares problem of the form min𝑋 ‖𝐴𝑋 − 𝐵‖𝐹 . What happens if:

• 𝐴 or 𝐵 has structural sparsity (most entries are zero)?

• 𝐴 is data-sparse (written as a Kronecker product, or related structure)?

• 𝐵 is only available on-demand, and we must induce sparsity to reduce the sampling
complexity?

Dense LA methods are often intractable! Need tailored algorithms and custom
computational kernels to achieve high performance.

2

Randomization in Numerical Linear Algebra

• Randomized computing has a long history. Randomized linear algebra has seen
significant progress since 2008 (e.g. [RT08], Blendenpik [AMT10]) [Woo14].

• Key ingredient: sketching. Example for overdetermined LSTSQ: apply random
matrix 𝑆 with far fewer rows than columns, solve cheaper problem

min
𝑋

‖𝑆𝐴𝑋 − 𝑆𝐵‖𝐹

• Efforts are underway to standardize randomized linear algebra primitives [Mur+23].
Intersection of sparsity and RandNLA: open frontier.

3

High-Level Contributions of this Work

Our goal: accelerate sparse LSTSQ problems using
randomization and communication avoiding (CA) parallel
algorithms. We will:

• Identify applications involving sparse linear
least-squares problems.

• Design novel randomized techniques and
parallelization strategies tailored to that sparsity.

• Deploy our methods on parallel architectures at scale.

Our Work

RandNLA
Theory

Parallel & CA
Algorithms

Sparsity-Tailored
Methods

4

Topics We Will Cover

1. Sketching linear least-squares problems in sparse Candecomp / PARAFAC
(Neurips’23; [BhMMGBD23]).

2. Distributed-memory randomized CP methods (Preprint, Arxiv; [BhMMBD23]).

3. CA-algorithms for sparse matrix completion (IPDPS’22; [BhBuDe22]).

4. Future work: sketching to accelerate the marginalized graph kernel, emerging
extensions of sketching for tensor trains.

5

Fast Exact Leverage Score
Sampling from Khatri-Rao
Products

The Khatri-Rao Product

• The Khatri-Rao product (KRP, denoted ⊙) is the column-wise Kronecker product of
two matrices:

[𝑎 𝑏
𝑐 𝑑] ⊙ [𝑤 𝑥

𝑦 𝑧] =
⎡
⎢⎢⎢
⎣

𝑎𝑤 𝑏𝑥
𝑐𝑤 𝑑𝑥
𝑎𝑦 𝑏𝑧
𝑐𝑦 𝑑𝑧

⎤
⎥⎥⎥
⎦

• Our goal: efficiently solve an overdetermined linear least-squares problem

min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹

where 𝐴 = 𝑈1 ⊙ ... ⊙ 𝑈𝑁 with 𝑈𝑗 ∈ ℝ𝐼𝑗×𝑅.

6

Motivating Application

This least-squares problem is the computational bottleneck in alternating least-squares
Candecomp / PARAFAC (CP) decomposition [KB09].

Figure 2: Subregion of Amazon sparse tensor and illustrated CP decomposition.

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition
rank 𝑅 ≈ 102. Assume 𝐼𝑗 = 𝐼 for all 𝑗 and 𝐼 ≥ 𝑅.

7

Randomized Linear Least-Squares

• Sketch & Solve: Apply short-wide sketching matrix 𝑆 to both 𝐴 and 𝐵, solve reduced
problem

min�̃� ∥𝑆𝐴�̃� − 𝑆𝐵∥
𝐹

• Want an (𝜀, 𝛿) guarantee on solution quality: with high probability (1 − 𝛿),

∥𝐴�̃� − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖

• Restrict 𝑆 to be a sampling matrix: selects and reweights rows from 𝐴 and 𝐵. How
do we downsample a Khatri-Rao product accurately AND efficently?

8

Effect of Sampling Operator, Sparse Tensor Decomposition

min
𝑈𝑗

∥[⨀
𝑘≠𝑗

𝑈𝑘] ⋅ 𝑈⊤
𝑗 − mat(𝒯, 𝑗)⊤∥

𝐹

𝑈3

⊙

⋅

𝑈1

𝑈⊤
2

−

m
at

(𝒯
,2

)

min
𝑈2

𝐹

𝑈2

∶=
mat(𝒯, 2)

⋅
𝑈3

⊙

⋅

𝑈1

𝐺+

MTTKRP

9

Our Contributions [BhMMGBD23]

Method Source Round Complexity (�̃� notation)

CP-ALS [KB09] 𝑁(𝑁 + 𝐼)𝐼𝑁−1𝑅
CP-ARLS-LEV [LK22] 𝑁(𝑅 + 𝐼)𝑅𝑁/(𝜀𝛿)
TNS-CP [Mal22] 𝑁3𝐼𝑅3/(𝜀𝛿)
GTNE [MS22] 𝑁2(𝑁1.5𝑅3.5/𝜀3 + 𝐼𝑅2)/𝜀2

STS-CP Ours 𝑁(𝑁𝑅3 log 𝐼 + 𝐼𝑅2)/(𝜀𝛿)

• We build a data structure with runtime logarithmic in the height of the KRP and
quadratic in 𝑅 to sample from leverage scores of 𝐴.

• Yields the STS-CP algorithm: lower asymptotic runtime for randomized dense CP
decomposition than recent SOTA methods (and even greater advantages for sparse
tensors).

10

Leverage Score Sampling

We will sample rows i.i.d. from 𝐴 according to the leverage score distribution on its rows.
Given reduced SVD 𝐴 = 𝑈Σ𝑉 ⊤, the leverage score ℓ𝑖 of row 𝑖 is

ℓ𝑖 = ‖𝑈 [𝑖, ∶]‖2 .

Theorem (Leverage Score Sampling Guarantees, [Mal22])
Suppose 𝑆 ∈ ℝ𝐽×𝐼 is a leverage-score sampling matrix for 𝐴 ∈ ℝ𝐼×𝑅, and define

�̃� ∶= arg min
�̃�

∥𝑆𝐴�̃� − 𝑆𝐵∥
F

If 𝐽 ≳ 𝑅 max(log(𝑅/𝛿), 1/(𝜀𝛿)), then with probability at least 1 − 𝛿,

∥𝐴�̃� − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹 .

11

Interpretation of Leverage Scores

When 𝐴 has 1 column, leverage scores are proportional to squared distance from origin.

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0 100 low leverage points (= c)
20 high leverage points (= 25c)
Least-Squares Best Fit

Figure 3: A univariate regression problem with low and high leverage points (intercept constrained to be 0).

12

Interpretation of Leverage Scores

In general, leverage scores of 𝐴 quantify influence that each row has on the solution,
capture correlation of rows of 𝐴 with rows of Σ−1𝑉 ⊤.

8 6 4 2 0 2 4 6 8
6

4

2

0

2

4

6

0.001

0.002

0.003

0.004

0.005

0.006

Le
ve

ra
ge

 S
co

re

(a) Projection onto 𝑥𝑦-plane

7.55.02.50.02.55.07.5

642
0

2
4

6

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

(b) (𝑥, 𝑦, 𝑧) data

Figure 4: Leverage scores of (𝑥, 𝑦, 0) triples from a multivariate normal distribution. Left: components of Σ−1𝑉 ⊤ shown. Right:
the red point has greater influence than the blue point (both equidistant from (0, 0)).

13

Interpretation of Leverage Scores

• Leverage score sampling captures the geometry of the column space of 𝐴.

• Rigorously: sampling i.i.d. with leverage score probabilities leads to an optimal
[DM20] sample complexity to construct an ℓ2-subspace embedding matrix 𝑆. W.h.p
simultaneously for ALL vectors 𝑥 ∈ ℝ𝑅,

(1 − ̃𝜀) ‖𝐴𝑥‖2 ≤ ‖𝑆𝐴𝑥‖2 ≤ (1 + ̃𝜀) ‖𝐴𝑥‖2

• In turn, an ℓ2-S.E. guarantees that our sketched solution has close-to-optimal residual
with respect to the original problem.

14

Prior Work

Problem: Cost to compute all leverage scores exactly is identical to runtime of QR
decomposition. Defeats the purpose of sampling!

• (SPALS [Che+16]): Sample rows according to approximate leverage scores of 𝐴.
Worst-case exponential in 𝑁 to achieve (𝜀, 𝛿) guarantee.

• (CP-ARLS-LEV [LK22]): Similar approximation, hybrid random-deterministic sampling
strategy and practical improvements.

• (TNS-CP [Mal22]): Samples implicitly from exact leverage distribution with
polynomial complexity to achieve (𝜀, 𝛿) guarantee, but linear dependence on 𝐼 for
each sample. We want to accelerate this algorithm.

15

Implicit Leverage Score Sampling

• For 𝐼 = 107, 𝑁 = 3, matrix 𝐴 has 1021 rows. Can’t even index rows with 64-bit
integers. Instead: use identity ℓ𝑖 = 𝐴 [𝑖, ∶] (𝐴⊤𝐴)+𝐴 [𝑖, ∶]⊤.

• Draw a row from each of 𝑈1, ..., 𝑈𝑁 , return their Hadamard product.

[0.1 0.5 -0.9 ... 0.3] [0.0 0.1 0.2 ... 0.9] [-0.8 0.3 0.3 ... -0.9] [-0.8 -0.1 0.5 ... 0.7]

U1
U2 U3 U4

• Let ̂𝑠𝑗 be a random variable for the row index drawn from 𝑈𝑗. Assume (̂𝑠1, ..., ̂𝑠𝑁)
jointly follows the leverage score distribution on 𝑈1 ⊙ ... ⊙ 𝑈𝑁 .

16

The Conditional Distribution of ̂𝑠𝑘

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺

𝐺>𝑘 𝐺+

⊛

⊛

PINV

𝑠1

𝑠2 𝑠3

ℎ⊤
<𝑘⊛

Theorem

𝑝(̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘) ∝ ⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑠𝑘, ∶]⊤ 𝑈𝑘 [𝑠𝑘, ∶], 𝐺>𝑘⟩

17

Key Sampling Primitive

𝑞 [𝑖] ∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑖, ∶]⊤ 𝑈𝑘 [𝑖, ∶], 𝐺>𝑘⟩

• Can’t compute 𝑞 entirely - would cost 𝑂(𝐼𝑅2) per sample per mode.

• Imagine we magically had all entries of 𝑞 - how to sample? Initialize 𝐼 bins, 𝑗’th has
width 𝑞 [𝑗].

• Choose random real 𝑟 in [0, 1], find “containing bin” 𝑖 such that

𝑖−1
∑
𝑗=0

𝑞 [𝑗] < 𝑟 <
𝑖

∑
𝑗=0

𝑞 [𝑗]

18

Binary Tree Inversion Sampling

• Locate bin via binary search (truncated to
log(𝐼/𝑅) levels)

• Root: branch right iff ∑𝐼/2
𝑗=0 𝑞 [𝑗] < 𝑟

• Level 2: branch right iff

𝐼/2
∑
𝑗=0

𝑞 [𝑗] +
3𝐼/4
∑

𝑗=𝐼/2
𝑞 [𝑗] < 𝑟

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1

Key: Can compute summations quickly if we cache information at each node!

19

Caching Partial Gram Matrices

Let an internal node 𝑣 correspond to an interval of rows [𝑆(𝑣)...𝐸(𝑣)].

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑞 [𝑗] =

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘,

𝐸(𝑣)
∑

𝑗=𝑆(𝑣)
𝑈𝑘 [𝑗, ∶]⊤ 𝑈𝑘 [𝑗, ∶], 𝐺>𝑘⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶]⊤ 𝑈𝑘 [𝑆(𝑣) ∶ 𝐸(𝑣), ∶], 𝐺>𝑘⟩

∶= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝐺𝑣, 𝐺>𝑘⟩

(1)

Can compute and store 𝐺𝑣 for ALL nodes 𝑣 in time 𝑂(𝐼𝑅2), storage space 𝑂(𝐼𝑅). Use
BLAS-3 syrk calls in parallel to efficiently construct the tree.

20

Efficient Sampling after Caching

• At internal nodes, compute
𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝐺𝑣, 𝐺>𝑘⟩ in 𝑂(𝑅2) time (read
normalization constant from root)

• At leaves, spend 𝑂(𝑅3) time to compute
remaining values of 𝑞. Can reduce to
𝑂(𝑅2 log 𝑅), see paper.

• Complexity per sample: 𝑂(𝑁𝑅2 log 𝐼)
(summed over all tensor modes).

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1

21

High-Performance Parallel Sampling, Approach 1

• We want to execute 𝐽 ∼ 50, 000
independent random walks down a
full, complete tree. At each node,
execute a matrix-vector
multiplication to decide which
direction to branch.

• Approach 1: Assign a thread team
to execute random walks
independently. Proudly parallel, no
data races.

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1

22

High-Performance Parallel Sampling, Approach 2

• Issues: irregular memory access
pattern on CPU, not optimal for a
single GPU thread to execute a
BLAS call.

• Approach 2: March down the tree
one level at a time, computing the
branches of ALL random walks with
a batched GEMV / GEMM.

𝑈(1)
1 𝑈(2)

1 𝑈(3)
1 𝑈(4)

1

23

Runtime Benchmarks (LBNL Perlmutter CPU)

102 103 104 105 106 107

I

10 3

10 2

10 1

100

Ti
m

e
(s

)

R = 32, N = 3

16 32 64 128
R

0.0

0.5

1.0

1.5

2.0

2.5
I = 222, N=3

2 4 6 8
N

0.1

0.2

0.3

0.4

0.5

0.6

0.7 I = 222, R=32

Construction Sampling

Figure 5: Time to construct sampler and draw 𝐽 = 65, 536 samples. C++ Implementation Linked to OpenBLAS. 1 Node, 128
OpenMP Threads, BLAS3 Construction, BLAS2 Sampling.

24

Distortion, Ours vs. Approximate Leverage Score Sampling

Define the distortion 𝐷(𝑆, 𝐴) of sketch 𝑆 with respect to matrix 𝐴 by

𝐷(𝑆, 𝐴) = 𝜅(𝑆𝑄) − 1

where 𝑄 is any orthonormal basis for the column space of 𝐴 [Mur+23]. Distortion
quantifies the distance preservation property of a sketch.

4 5 6 7 8 9 104 5 6 7 8 9 10
N

10 1

100

101

102

D
is

to
rt

io
n

D
(S

, A
)

R = 64

16 32 64 128
R

N = 6

Product Approximation Our Sampler

Figure 6: Sketch distortion as a function of KRP matrix count 𝑁 and column count 𝑅, 𝐽 = 65, 536. Green: our sampler. Blue:
product approximation by [LK22].

25

Accuracy Comparison for Fixed Sample Count

25 50 75 100 125
Target Rank

0.20

0.22

0.24

Fi
t

Uber (~3.3e6 nz)

25 50 75 100 125
Target Rank

0.05

0.10

0.15

0.20

Fi
t

Enron* (~5.4e7 nz)

25 50 75 100 125
Target Rank

0.05

0.06

0.07

0.08

Fi
t

NELL-2* (~7.7e7 nz)

25 50 75 100 125
Target Rank

0.34

0.36

0.38

0.40

Fi
t

Amazon (~1.8e9 nz)

25 50 75 100 125
Target Rank

0.06

0.08

0.10

Fi
t

Reddit* (~4.7e9 nz)
CP-ARLS-LEV
CP-ARLS-LEV (hybrid)
STS-CP (ours)
Exact Solve

Figure 7: Sparse tensor ALS accuracy comparison for 𝐽 = 216 samples, varied target ranks.
26

STS-CP Makes Faster Progress to Solution

0 1000 2000 3000 4000 5000 6000 7000
Cumulative ALS Update Time (s)

0.080

0.085

0.090

0.095

0.100

Fi
t STSCP (ours), J=65,536

CPARLSLEV, J=196,608
CPARLSLEV, J=163,840
CPARLSLEV, J=131,072
CPARLSLEV, J=98,304
CPARLSLEV, J=65,536

Figure 8: Fit vs. ALS update time, Reddit tensor, 𝑅 = 100.

27

Takeaways: Faster Leverage Score Sampling from Khatri-Rao Products

• We accelerated sampling from the Khatri-Rao product by devising a novel data
structure and a high-performance implementation.

• We demonstrated convincing speedups and accuracy benefits over CP-ARLS-LEV
[LK22], an algorithm that approximates the leverage scores.

• Up next: distributed-memory formulations of both our algorithm and CP-ARLS-LEV.

28

High-Performance Randomized
CP Decomposition at Scale

Sparse Tensors from FROSTT

Tensor Dimensions NNZ

Uber 183 × 24 × 1.1𝐾 × 1.7𝐾 3.3𝑀
Amazon 4.8𝑀 × 1.8𝑀 × 1.8𝑀 1.7𝐵
Patents 46 × 239𝐾 × 239𝐾 3.6𝐵
Reddit 8.2𝑀 × 177𝐾 × 8.1𝑀 4.7𝐵

• Sparse tensors may have billions of nonzero entries, mode sizes in the tens of
millions [Smi+17].

• Randomized algorithms okay in shared-memory, but existing codes cannot
compete with classic distributed-memory implementations [Smi+15; Kan+12].

29

Our Contributions [BhMMBD23]

• We give high-performance
implementations of STS-CP and
CP-ARLS-LEV scaling to thousands of
CPU cores.

• Up to 11x speedup over SPLATT.

• Several communication / computation
optimizations unique to randomized
CP decomposition.

0 200 400 600 800 1000 1200
Time (s)

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

Fi
t

SPLATT
d-STS-CP (ours)
d-CP-ARLS-LEV (ours)

Figure 9: Accuracy vs. time, Reddit tensor, 𝑅 = 100, 512
cores / 4 Perlmutter CPU nodes, 4.7 billion nonzeros.

30

Methodology

• We distribute STS-CP and CP-ARLS-LEV [LK22] with very distinct communication /
computation patterns, each with varying time / accuracy tradeoffs.

• We tailor the communication schedule to randomized CP decomposition to eliminate
Reduce-scatter collectives, achieving better load balance in the process.

• We use a hybrid of CSC format for nonzero lookups and CSR format to enable
race-free thread parallelism. Key primitive: sparse transpose.

31

Factor and Sparse Matrix Layout

• Processors arranged in a hypercube.

• Factor matrices 𝑈1, ..., 𝑈𝑁 distributed by block
rows. Assume that all processors redundantly
compute 𝑈⊤

𝑗 𝑈𝑗 for all 𝑗 (product is gram matrix 𝐺
of 𝐴).

• Each processor owns a block of the sparse
tensor. Randomly permute modes to
load-balance.

1
2
3
4
5
6
7
8

1
2

5
6

7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8
4

3

32

Bulk-Synchronous Randomized ALS Update

1. Sampling and All-gather: Sample rows of 𝑈≠𝑗, Allgather the rows to processors
who require them.

2. Local Computation: Extract the corresponding nonzeros from the local tensor,
execute the downsampled MTTKRP.

3. Reduction and Postprocessing: Reduce the accumulator of the sparse-dense
matrix multiplication across processors, if necessary, and post-process the factor.

33

Distribution of Distinct Sampling Algorithms

Sampler Compute Messages Words Communicated

d-CP-ARLS-LEV 𝐽𝑁/𝑃 𝑃 𝑃
d-STS-CP 𝐽𝑅2 log 𝐼/𝑃 𝑃 log 𝑃 𝐽𝑅 log 𝑃 /𝑃

• CP-ARLS-LEV approximates the leverage scores with lower computation /
communication overhead. Accuracy degrades at high rank.

• STS-CP samples from the exact leverage score distribution, requiring higher
sampling time.

• Problem: How to sample when factors distributed by block rows?

34

d-CP-ARLS-LEV

• Key Idea: Approximate the leverage scores of 𝐴 by the product of leverage scores
on each factor matrix 𝑈𝑖.

• Let 𝑈 (𝑝𝑗)
𝑖 be the block row of 𝑈𝑖 owned by processor 𝑝𝑗. Leverages scores of this

block given by
diag (𝑈 (𝑝𝑗)

𝑖 𝐺+𝑈 (𝑝𝑗)⊤
𝑖)

• Computed locally on each processor without communication. Sampling requires (in
expectation) only a small constant number of words communicated.

• Drawback: Accuracy degrades for high 𝑁 or 𝑅.

35

d-STS-CP

• Samples from exact leverage score
distribution by sampling from each of
𝑈1, ..., 𝑈𝑁 in sequence (excluding 𝑈𝑗).

• Execute random walk on binary tree to find
the row index for each 𝑈𝑗. Node 𝑣 caches
“partial Gram matrix ” 𝐺𝑣.

• At each node, compute ℎ⊤𝐺𝑣ℎ (where ℎ is
unique to each sample) to decide whether
to branch left / right.

𝑈(𝑝1)
1 𝑈(𝑝2)

1 𝑈(𝑝3)
1 𝑈(𝑝4)

1

36

d-STS-CP Parallelization Scheme

𝐿

𝑝1, 𝑝2, 𝑝3, 𝑝4

𝑝1, 𝑝2 𝑝3, 𝑝4

𝑝1 𝑝2 𝑝3 𝑝4

Sample
Owner

Step 1: 𝑝2

Step 2: 𝑝3

Step 3: 𝑝3

Local Compute

𝑈(𝑝1)
1 𝑈(𝑝2)

1 𝑈(𝑝3)
1 𝑈(𝑝4)

1

37

Randomization-Tailored Communication Schedule

1
2
3
4
5
6
7
8

1
2

5
6

7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8
4

3
1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

=

Tensor Stationary MTTKRP

1
2
3
4
5
6
7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8

=

Accumulator Stationary MTTKRPInitial Data Distribution

All-gather Downsampled Matrix Reduce-Scatter Redistribute Downsampled Tensor Stationary

1
2
3
4
5
6
7
8

1 2 5 6 3 4 7 8

1
2

5
6

7
8

4
3

Schedule Words Communicated / Round

Non-Randomized TS 2𝑁𝑅 (∏𝑁
𝑘=1 𝐼𝑘/𝑃)

1/𝑁

Sampled TS 𝑁𝑅 (∏𝑁
𝑘=1 𝐼𝑘/𝑃)

1/𝑁

Sampled AS 𝐽𝑅𝑁(𝑁 − 1)

38

Speedup and Scaling on Large Sparse Tensors

25 50 750

2

4

6

8

10
4

N
od

es

Amazon

25 50 750.0

0.5

1.0

1.5

2.0

2.5

Patents

25 50 750.0

2.5

5.0

7.5

10.0

12.5

15.0
Reddit

25 50 750

2

4

6

8

10

16
 N

od
es

25 50 750.0

0.5

1.0

1.5

2.0

2.5

25 50 750.0

2.5

5.0

7.5

10.0

12.5

15.0

Sp
ee

du
p

ov
er

 S
PL

AT
T

/ I
te

ra
tio

n

Target Rank

SPLATT d-STS-CP d-CP-ARLS-LEV

(a) Speedup

1 2 4 8
0

1

2

3

4

5

6

d-
C

P-
AR

LS
-L

E
V

Amazon

2 4 8 16
0

2

4

6

8

10

12

14

16
Patents

2 4 8 16
0

2

4

6

8

10

12
Reddit

1 2 4 8
Node Count

0

2

4

6

8

10

d-
ST

S-
C

P

2 4 8 16
Node Count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

2 4 8 16
Node Count

0

2

4

6

8

10

12

14

16

Ti
m

e
fo

r
20

 A
LS

 It
er

at
io

ns
 (s

)

Allgather Reduce-Scatter Sampling MTTKRP Postprocessing

(b) Strong Scaling, 𝑅 = 25

Figure 10: Speedup over SPLATT and strong scaling for our randomized algorithms.

39

Comparison of Communication Schedules

TS AS TS AS TS AS
0

5

10

15

20

25

Ti
m

e
fo

r
20

 A
LS

 It
er

at
io

ns
 (s

)

Amazon Patents Reddit

Allgather
Reduce-Scatter
Sampling

MTTKRP
Postprocessing

Figure 11: Runtime breakdown for tensor-stationary vs. accumulator-stationary communication schedules.

40

Takeaways: Distributed-Memory Randomized CP Algorithms

• We proposed the first distributed-memory implementation of two sampling-based,
sparse CP algorithms.

• We optimized our algorithms to avoid communication in both the sampling and
MTTKRP phases.

• Our method scales to thousands of CPU cores with significant speedups over existing
SOTA sparse tensor decomposition software.

41

Communication-Avoiding
Algorithms for Matrix
Completion

Matrix / Tensor Completion vs. Factorization

• Sparse Tensor Completion: Zero indicates unobserved data. Want to fit model only
to observed entries, expect it to generalize. Distinct from factorization, where zeros
are “true zeros”.

User 1

User 2

User 3

M
ov

ie
 1

M
ov

ie
 2

M
ov

ie
 3

• For simplicity, we will focus on the matrix case. Let 𝑆 ∈ ℝ𝑚×𝑛 be the matrix we want
to factor and 𝐴 ∈ ℝ𝑚×𝑟, 𝐵 ∈ ℝ𝑛×𝑟 be embedding matrices.

42

Collaborative Filtering

• Factorization: Solve min𝐴,𝐵 ∥𝑆 − 𝐴𝐵⊤∥𝐹 .

• Completion: Solve min𝐴,𝐵 ∥𝑆 − 𝑀 ⊛ (𝐴𝐵⊤)∥𝐹 , where 𝑀 is a binary mask with the
same sparsity pattern as 𝑆.

• 𝑀 ⊛ (𝐴𝐵⊤) is called sampled dense-dense matrix multiplication.

()�M A
BT

43

ALS Formulation

Cheap, first-pass algorithm (can be modified to impose nonnegativity): alternating
least-squares.

• Keep 𝐵 fixed, solve for 𝐴:

𝐴 ∶= min
𝑋

∥𝑀 ⊛ (𝑋𝐵⊤) − 𝑆∥𝐹

• In standard form, we get an independent LSTSQ problem for each output row of 𝐴
(each 𝐸𝑗 selects nonzero indices of 𝑀 [𝑗, ∶]):

vec(𝐴) ∶= argmin𝑥

∥
∥
∥
∥
∥

⎡
⎢⎢⎢
⎣

𝐸1𝐵
𝐸2𝐵

⋱
𝐸𝑚𝐵

⎤
⎥⎥⎥
⎦

𝑥 − vec𝑛𝑧(𝑆)
∥
∥
∥
∥
∥2

44

Our Contributions [BhBuDe22]

• Prior work: The ALS algorithm for matrix completion can be reformulated to depend
entirely on the SDDMM and SpMM kernels (running in a conjugate-gradient loop)
[CZ13; Nis+18].

• We build communication-avoiding, distributed-memory implementations of the
SDDMM and SpMM kernels. We use them in sparse matrix factorization on
hundreds of Cori CPU nodes.

• These can also be used for specific graph neural network architectures with
self-attention (similar to CAGNET [TYB20]).

45

Existing Algorithms for SpMM

S

B

A

nr

r

La
ye

r 1
1.5D Dense Shifting

SA SSA

B B

Re
du

ce
-S

ca
tt

er

 a
nd

 A
ll-

ga
th

er

m

Replicated

Propagated

Stationary

A

B

S

B

A

La
ye

r 2

SA

B

SA

B

SA

B

1.5D Sparse Shifting 2.5D Dense Replicating 2.5D Sparse Replicating

Re
du

ce
-S

ca
tt

er

 a
nd

 A
ll-

ga
th

er

Re
du

ce
-S

ca
tt

er

 a
nd

 A
ll-

ga
th

er

Re
du

ce
-S

ca
tt

er

 a
nd

 A
ll-

ga
th

er

5

7

8

6

5

7

8

6

5

7

8

6

5

7

8

6

5

7

8

6

5 6 7 8

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1 32 4

1 32 4

1 2 3 4

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

5 6 7 8

5 5 5 5
6 6 6 6
7 7 7 7

8888

5 6 7 8

5 6

87

5 6

78

5

6

7

8

1

1 2

3 4

1 2

34

1

2

3

4

1 2

3 4

2

34

1

23

4

5 6

7 8

5 6

78

5

67

8

La
ye

r 1
La

ye
r 2

La
ye

r 1
La

ye
r 2

La
ye

r 1
La

ye
r 2

46

SpMM / SDDMM Duality

SDDMM and SpMM have identical data access patterns: every nonzero (𝑖, 𝑗) ∈ nz(𝑆)
requires an interaction between row 𝑖 of 𝐴 and row 𝑗 of 𝐵.

1: procedure SpMM(S, B)
2: Initialize 𝐴 ∶= 0;
3: for (𝑖, 𝑗) ∈ nz(𝑆) do
4: 𝐴 [𝑖, ∶] += 𝑆 [𝑖, 𝑗] 𝐵 [𝑗, ∶]
5: return 𝐴

1: procedure SDDMM(S, A, B)
2: Initialize 𝑅 ∶= 0;
3: for (𝑖, 𝑗) ∈ nz(𝑆) do
4: 𝑅 [𝑖, 𝑗] = 𝑆 [𝑖, 𝑗] (𝐴 [𝑖, ∶] ⋅ 𝐵 [𝑗, ∶])
5: return 𝑅

Observation: Every distributed algorithm for SpMM can be converted into an
algorithm for SDDMM, and vice-versa.

47

Converting SpMM Algorithms to SDDMM Algorithms

Consider any distributed algorithm for SpMM that performs no replication. For all 𝑘 ∈ [1, 𝑟],
the algorithm must (at some point)

• Co-locate 𝑆 [𝑖, 𝑗] , 𝐴 [𝑖, 𝑘] , 𝐵 [𝑗, 𝑘] on a single processor
• Perform the update 𝐴 [𝑖, 𝑘] += 𝑆 [𝑖, 𝑗] 𝐵 [𝑗, 𝑘]

Transform the algorithm as follows:

1. Change the input sparse matrix 𝑆 to an output initialized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update 𝑆 [𝑖, 𝑗] += 𝐴 [𝑖, 𝑘] 𝐵 [𝑗, 𝑘]

48

Dealing with Replication

Inputs are typically replicated via broadcasts, outputs via reduction. To handle this:

• Replace initial braodacasts of inputs with terminal reductions.
• Replace terminal reductions of outputs with initial broadcasts.

The resulting algorithm performs SDDMM up to multiplication with the original
values in 𝑆.

We performed a communication analysis for several variants of SpMM / SDDMM, as well
as optimizations that fuse the two kernels back-to-back.

49

Strong Scaling on LBNL Cori

101 102

101

102

103
amazon-large.mtx uk-2002.mtx eukarya.mtx arabic-2005.mtx twitter7.mtx

101 102

101

102

103

101 102 101 102 101 102 102

Node Count

Ti
m

e
fo

r 5
 Fu

se
dM

M
 C

al
ls

(s
)

1.5D Dense Shift, No Elision
1.5D Dense Shift, Repl. Reuse

1.5D Dense Shift, Local Kernel Fusion
1.5D Sparse Shift, No Elision

1.5D Sparse Shift, Repl. Reuse
PetSC (Baseline)

PetSC Timeout
2.5D Sparse Repl., No Elision

2.5D Dense Repl., Repl. Reuse
2.5D Dense Repl., No Elision

Figure 12: Strong scaling Experiments for 5 back-to-back SDDMM and SpMM calls on Cori CPU nodes.

50

Applications: Collaborative Filtering and GATs

0 10 20 30 40 50
Application Runtime (s)

1.5D Sparse Shift
2.5D Sparse Repl.

1.5D Local Kernel Fusion
2.5D Dense Repl.

1.5D Dense Repl. Reuse

1.5D Sparse Shift

2.5D Sparse Repl.

2.5D Dense Repl. Reuse

1.5D Dense Repl. Reuse

GA
T

AL
S

FusedMM Replication
FusedMM Propagation
FusedMM Computation
Communication outside FusedMM
Computation outside FusedMM

Figure 13: Application benchmarks for our distributed SDDMM / SpMM implementations

51

Takeaways: Communication Avoiding SDDMM / FusedMM Kernels

• We devised a procedure to convert well-analyzed SpMM algorithms into SDDMM
algorithms.

• We analyzed the communication costs of a pair of back-to-back SpMM / SDDMM calls
and demonstrated significant speedups at scale over the implementation in PETSc.

• We used our methods to accelerate ALS matrix completion on some of the largest
matrices in the Suitesparse collection.

52

Future Work

Work in Progress

Currently exploring three thrusts:

• Extensions of our CP sampling strategy to other tensor formats (mainly tensor trains).

• Application of sketching to domain science problems, such as Electrical Impedence
Tomography (EIT).

• Accelerating other problems that involve tensor product structure, such as the
marginalized graph kernel.

53

Extension of Implicit Sampling to Tensor Train Decomposition

The tensor-train decomposition represents a tensor 𝒯 as a contraction between order-3
“tensor-cores”.

Tensor Train

𝑗’th core has dimensions 𝑅𝑗 × 𝐼𝑗 × 𝑅𝑗+1. Represents a tensor with 𝐼𝑁 elements using
𝑂(𝑁𝐼𝑅2) space when all rank are equal.

54

Iterative TT Optimization Problems

Reshaped TensorDesign Matrix

55

Sampling from 𝐴<𝑗

Theorem (Orthonormal Subchain Leverage Sampling)
There exists a data structure that costs 𝑂(𝐼𝑅3) per tensor train core to build / update.
For any 1 < 𝑗 ≤ 𝑁 , the structure can sample a row from 𝐴<𝑗 proportional to its squared
row norm in time

𝑂((𝑗 − 1)𝑅2 log 𝐼)

Apply same binary tree trick to the left matricizations of each core 𝒜𝑗, exploit
orthonormality to reduce complexity. Accelerates TT-ALS, potentially useful in other
contexts.

56

Tensor Structure in PDE-Inverse Problems

Consider a 2D slice of conducting tissue. A source voltage is applied and the potential is
measured at several pairs of boundary points.

Figure 14: CT Image of thorax with EIT equipotential lines. Image credit Andy Adler, CC3.0 unported, Wikimedia Commons.

Goal: determine conductivity in interior of tissue. Solve (𝑈11 ⊙ 𝑈12 + 𝑈21 ⊙ 𝑈22)𝑥 = 𝑏
where 𝑈11, 𝑈12, 𝑈21, 𝑈22 depend on the geometry of the tissue / boundary, 𝑏 is a
measurement taken for every source / sink pair [Che+20].

57

Sketching for the Marginalized Graph Kernel

The marginalized graph kernel computes a similarity measure between two (labeled,
weighted) graphs 𝐺1, 𝐺2 by finding the stationary distribution of a random walk on their
Kronecker Product Graph [Vis+10].

=

Graph 1 Graph 2
Kronecker Product

For the inner product edge kernel: solve (∑𝑁
𝑖=1 𝐴𝑖 ⊗ 𝐵𝑖) 𝑥 = 𝑝 where 𝐴𝑖, 𝐵𝑖 have the

sparsity structures of adjacency matrices of 𝐴1, 𝐴2. Potentially a ripe application for
Tensorsketch, low-rank approximation.

58

Conclusions and
Acknowledgements

Summary

• We exhibited algorithms for ALS CP decomposition that have lower asymptotic
complexity and faster time-to-solution compared to SOTA competitors.

• We showed that randomized methods are practical on thousands of CPU cores and
billion-scale sparse tensors, offering up to 11x speedup over carefully-engineered
deterministic algorithms

• We optimized the SDDMM kernel involved in sparse matrix factorization based on
proven algorithms for SpMM, exploiting algorithmic duality between the two kernels.

• Planned work this year: investigate other regression problems that involve tensor
structure, particularly scientific applications.

59

Acknowledgements

This slide will expand to a whole section in my dissertation talk! For now, my appreciation
goes to:

• Friends and past / present members of BeBOP and PASSION.
• Collaborators Laura Grigori, Osman Asif Malik, Riley Murray.
• Committee members Katherine Yelick and Michael Lindsey.
• My fantastic advisors, Aydın Buluç and James Demmel.

This work was funded by the US Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Department of Energy Computational Science
Graduate Fellowship under Award Number DE-SC0022158.

60

References i

[BhBuDe22] Vivek Bharadwaj, Aydın Buluç, and James Demmel. “Distributed-Memory Sparse
Kernels for Machine Learning”. In: 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Los Alamitos, CA, USA: IEEE Computer Society, June
2022, pp. 47–58.

[BhMMBD23] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Aydin Buluç, and James Demmel.
Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition.
2023. arXiv: 2210.05105 [math.NA].

[BhMMGBD23] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Laura Grigori, Aydın Buluç, and
James Demmel. “Fast Exact Leverage Score Sampling from Khatri-Rao Products
with Applications to Tensor Decomposition”. In: Thirty-seventh Conference on Neural
Information Processing Systems. Dec. 2023.

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. “Blendenpik: Supercharging
LAPACK’s Least-Squares Solver”. In: SIAM Journal on Scientific Computing 32.3
(2010), pp. 1217–1236.

61

https://arxiv.org/abs/2210.05105

References ii

[And+92] E Anderson, Z Bai, C Bischof, J Demmel, J Dongarra, J Du Croz, A Greenbaum,
S Hammarling, A McKenney, S Ostrouchov, and D Sorensen. LAPACK users‘ guide:
Release 1.0. Jan. 1992.

[Bla+97] L. Blackford, J. Choi, A. Cleary, J. Demmel, Inderjit S. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, 1997.

[Che+16] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. “SPALS: Fast Alternating
Least Squares via Implicit Leverage Scores Sampling”. In: Advances in Neural
Information Processing Systems. Vol. 29. Curran Associates, Inc., 2016.

[Che+20] Ke Chen, Qin Li, Kit Newton, and Stephen J. Wright. “Structured Random Sketching for
PDE Inverse Problems”. In: SIAM Journal on Matrix Analysis and Applications 41.4
(2020), pp. 1742–1770. doi: 10.1137/20M1310497.

[CZ13] John Canny and Huasha Zhao. “Big Data Analytics with Small Footprint: Squaring the
Cloud”. en. In: KDD. 2013.

62

https://doi.org/10.1137/20M1310497

References iii

[DKM06] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. “Fast Monte Carlo Algorithms
for Matrices I: Approximating Matrix Multiplication”. In: SIAM Journal on Computing
36.1 (2006), pp. 132–157. doi: 10.1137/S0097539704442684.

[DM20] Michal Derezinski and Michael W. Mahoney. “Determinantal Point Processes in
Randomized Numerical Linear Algebra”. In: CoRR abs/2005.03185 (2020). arXiv:
2005.03185.

[Gat+20] Mark Gates, Ali Charara, Jakub Kurzak, Asim YarKhan, Mohammed Al Farhan,
Dalal Sukkari, and Jack Dongarra. SLATE Users’ Guide. SLATE Working Notes 10,
ICL-UT-19-01. July 2020.

[Kan+12] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. “GigaTensor:
scaling tensor analysis up by 100 times - algorithms and discoveries”. In:
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining. KDD ’12. New York, NY, USA: Association for Computing Machinery,
Aug. 2012, pp. 316–324. isbn: 978-1-4503-1462-6.

63

https://doi.org/10.1137/S0097539704442684
https://arxiv.org/abs/2005.03185

References iv

[KB09] Tamara G. Kolda and Brett W. Bader. “Tensor Decompositions and Applications”. In:
SIAM Review 51.3 (Aug. 2009). Publisher: Society for Industrial and Applied Mathematics,
pp. 455–500. issn: 0036-1445. doi: 10.1137/07070111X.

[Law+79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic Linear Algebra
Subprograms for Fortran Usage”. In: ACM Trans. Math. Softw. 5.3 (Sept. 1979),
pp. 308–323. issn: 0098-3500.

[LK22] Brett W. Larsen and Tamara G. Kolda. “Practical Leverage-Based Sampling for
Low-Rank Tensor Decomposition”. In: SIAM Journal on Matrix Analysis and
Applications 43.3 (2022), pp. 1488–1517.

[Mal22] Osman Asif Malik. “More Efficient Sampling for Tensor Decomposition With
Worst-Case Guarantees”. In: Proceedings of the 39th International Conference on
Machine Learning. Vol. 162. Proceedings of Machine Learning Research. PMLR, July
2022, pp. 14887–14917.

64

https://doi.org/10.1137/07070111X

References v

[Min+23] Rachel Minster, Irina Viviano, Xiaotian Liu, and Grey Ballard. “CP decomposition for
tensors via alternating least squares with QR decomposition”. In: Numerical Linear
Algebra with Applications 30.6 (2023), e2511. doi:
https://doi.org/10.1002/nla.2511.

[MS22] Linjian Ma and Edgar Solomonik. “Cost-efficient Gaussian tensor network
embeddings for tensor-structured inputs”. In: Advances in Neural Information
Processing Systems. Vol. 35. Curran Associates, Inc., 2022, pp. 38980–38993.

[Mur+23] Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson,
Maksim Melnichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek, Michal Derezinski,
Miles E. Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra. Randomized Numerical
Linear Algebra: A Perspective on the Field With an Eye to Software. Tech. rep.
UCB/EECS-2023-19. EECS Department, University of California, Berkeley, Feb. 2023.

[Nis+18] Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong, and
P. Sadayappan. “Sampled Dense Matrix Multiplication for High-Performance Machine
Learning”. In: HiPC. Dec. 2018, pp. 32–41.

65

https://doi.org/https://doi.org/10.1002/nla.2511

References vi

[RT08] Vladimir Rokhlin and Mark Tygert. “A fast randomized algorithm for overdetermined
linear least-squares regression”. In: Proceedings of the National Academy of Sciences
105.36 (2008), pp. 13212–13217. doi: 10.1073/pnas.0804869105.

[Smi+15] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.
“SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication”. In: 2015 IEEE
International Parallel and Distributed Processing Symposium. ISSN: 1530-2075. May
2015, pp. 61–70.

[Smi+17] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. FROSTT: The Formidable Repository of Open Sparse Tensors and
Tools. 2017. url: http://frostt.io/.

[TDB10] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. “Towards dense linear algebra for
hybrid GPU accelerated manycore systems”. In: Parallel Computing 36.5-6 (June
2010), pp. 232–240. issn: 0167-8191.

[TYB20] Alok Tripathy, Katherine Yelick, and Aydın Buluç. “Reducing Communication in Graph
Neural Network Training”. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 2020.

66

https://doi.org/10.1073/pnas.0804869105
http://frostt.io/

References vii

[Vis+10] S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.
“Graph Kernels”. In: Journal of Machine Learning Research 11.40 (2010),
pp. 1201–1242. url: http://jmlr.org/papers/v11/vishwanathan10a.html.

[Woo14] David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: Found.
Trends Theor. Comput. Sci. 10.1–2 (Oct. 2014), pp. 1–157. issn: 1551-305X.

67

http://jmlr.org/papers/v11/vishwanathan10a.html

Backup Slides, Deck 1: Fast
Khatri-Rao Product Leverage
Score Sampling

Leverage Score Sampling Proof Sketch

Theorem (Structural Conditions for LSTSQ, [DKM06])
Let 𝑄 be a basis for the column-space of 𝐴. Suppose that a sketching matrix 𝑆 satisfies
the following two deterministic structural conditions:

• (S1) Approximate Isometry: 𝜎min(𝑆𝑄) ≥ 1/
√

2
• (S2) Minimal Junk: ∥𝑄⊤𝑆⊤𝑆𝐵⊥∥2

𝐹 ≤ 𝜀 ∥𝐵⊥∥2
𝐹 /2

Then the sketched solution �̃� satisfies

∥𝐴�̃� − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹 .

Main Proof Idea: Show, with probability ≥ (1 − 𝛿), that a leverage score sketch satisfies
these two conditions.

68

Leverage Score Sampling Proof Sketch

• (S1) holds by the well-known ℓ2-subspace embedding property of leverage score
sketches [Woo14], with probability ≥ 1 − 𝛿/2 for high enough sample count.

• (S2) holds by an approximate matrix-multiplication argument [DKM06] (with one-sided
information) with probability ≥ 1 − 𝛿/2.

∥𝑄⊤𝑆⊤𝑆𝐵⊥∥2
𝐹 = ∥0 − 𝑄⊤𝑆⊤𝑆𝐵⊥∥2

𝐹

= ∥𝑄⊤𝐵⊥ − 𝑄⊤𝑆⊤𝑆𝐵⊥∥2
𝐹

• Use a union bound to guarantee that both hold with probability ≥ 1 − 𝛿. Will sketch
the proof of (S1).

69

Leverage Score Sampling Gives an ℓ2-SE Proof Sketch

Proof follows a version by David Woodruff (we adapt it to our notation and drop the 𝛽
parameter). Let 𝐴 = 𝑄Σ𝑉 ⊤; we need a matrix Chernoff result.

Theorem (Matrix Chernoff, [Woo14])
Let 𝑋1, ..., 𝑋𝐽 be independent copies of a symmetric random matrix 𝑋 ∈ ℝ𝑅×𝑅 satisfying

1. E [𝑋] = 0,
2. ‖𝑋‖2 ≤ 𝛾,
3. ∥E [𝑋⊤𝑋]∥2 ≤ 𝑇 ≤ 𝐽2.

Let 𝑊 = 1
𝐽 ∑𝐽

𝑖=1 𝑋𝑖. Then for any ̃𝜀 > 0,

Pr [‖𝑊‖2 > ̃𝜀] ≤ 2𝑅 exp (−𝐽 ̃𝜀2/(2𝑇 + 2𝛾 ̃𝜀/3))

70

Leverage Score Sampling Gives an ℓ2-SE Proof Sketch

Want to show, for appropriate parameters 𝐽, 𝛾, 𝜀, that 1√
2 ≤ 𝜎2

𝑖 (𝑆𝑈) w.h.p. (1 − 𝛿). Let
𝑧𝑖 = (𝑆𝑈)⊤

𝑖∶ , 𝑞𝑗 = 𝑄⊤
𝑗∶ and choose

𝑝𝑗 ∶= ℓ𝑗/𝑅 ∀𝑗

𝑋𝑖 ∶= 𝐼 − 𝑧𝑖𝑧⊤
𝑖 /𝑝𝑖

𝛾 ∶= 1 + 𝑅

̃𝜖 ∶= 1 − 1/
√

2

𝑇 ∶= 𝑅 − 1

Easy to verify that E [𝑋] = 0, need to check conditions (2) and (3) of the Chernoff bound.

71

Leverage Score Sampling Gives an ℓ2-SE

Condition 2: ‖𝑋‖2 ≤ 𝛾 implies max𝑗∈[𝐼] ∥𝐼 − 𝑞𝑗𝑞⊤
𝑗

𝑝𝑗
∥ ≤ 𝛾. For any 𝑗, we have

∥𝐼 −
𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

∥
2

≤ ‖𝐼‖2 + ∥
𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

∥
2

= 1 +
𝑅 ∥𝑞𝑗𝑞⊤

𝑗 ∥2

∥𝑞𝑗∥
2
2

= 1 + 𝑅
= 𝛾

Crucially, this choice for 𝑝𝑗 allows the minimal choice 1 + 𝑅 for 𝛾.

72

Leverage Score Sampling Gives an ℓ2-SE

Condition 3: We derive

E [𝑋⊤𝑋] =
𝐼

∑
𝑗=1

𝑝𝑗(𝐼 − 𝑞𝑗𝑞⊤
𝑗 /𝑝𝑗)(𝐼 − 𝑞𝑗𝑞⊤

𝑗 /𝑝𝑗)

=
𝐼

∑
𝑗=1

𝑝𝑗𝐼 − 2
𝐼

∑
𝑗=1

𝑝𝑗𝑞𝑗𝑞⊤
𝑗 /𝑝𝑗 +

𝐼
∑
𝑗=1

𝑝𝑗𝑞𝑗𝑞⊤
𝑗 𝑞𝑗𝑞⊤

𝑗
𝑝2

𝑗

= 𝐼 − 2𝐼 +
𝐼

∑
𝑗=1

𝑞𝑗𝑞⊤
𝑗 𝑞𝑗𝑞⊤

𝑗
𝑝𝑗

= 𝐼 − 2𝐼 +
𝐼

∑
𝑗=1

𝑅𝑞𝑗𝑞⊤
𝑗

= (𝑅 − 1)𝐼

So ∥E [𝑋⊤𝑋]∥2 = 𝑅 − 1 ≤ 𝐽2.
73

Leverage Score Sampling Gives an ℓ2-SE

Evaluating the Chernoff guarnatee, we ignore ̃𝜖 since it is a constant. We want

exp (−𝐽 ̃𝜀2/(2𝑇 + 2𝛾 ̃𝜀/3)) ≤ 𝛿

𝐽/(2𝑅 + 2𝑅/3)) ≥ Ω (log 𝑅
𝛿)

Setting 𝐽 = Ω (𝑅 log 𝑅
𝛿) causes the failure probability to fall below the threshold.

74

The Normal Equations in Tensor Decomposition

• The normal equations are widely used for ALS CP decomposition [KB09] despite
squaring the condition number.

• QR decomposition of a KRP is more difficult to compute (but only slightly) [Min+23]:

𝐴 ∶= 𝑈1 ⊙ ... ⊙ 𝑈𝑁

= (𝑄1𝑅1) ⊙ ... ⊙ (𝑄𝑁𝑅𝑁)
= (𝑄1 ⊗ ... ⊗ 𝑄𝑁) ⋅ (𝑅1 ⊙ ... ⊙ 𝑅𝑁)
= (𝑄1 ⊗ ... ⊗ 𝑄𝑁) ⋅ 𝑄tail ⋅ 𝑅tail

(2)

• QR formulation useful for lower-precision decomposition, adversarial tensors
[Min+23], e.g. sin(𝑥1 + ... + 𝑥𝑁).

75

Why Don’t We Use the QR Formulation?

• QR Decomposition not useful for leverage score sampling. 𝑅𝑁 samples required to
sketch 𝑄1 ⊗ ... ⊗ 𝑄𝑁 , computation of 𝑄tail introduces exponential cost in 𝑁 .

• Leverage score computation robust to numerical error (just take slightly more
samples).

• For our applications, we can sacrifice some accuracy.

76

Backup Slides, Deck 2:
Randomized Distributed CP
Decomposition

d-STS-CP Parallelization Scheme

• Matrices 𝐺𝑣 replicated log 𝑃 times. Each processor stores data on path from leaf to
root.

• Initialization: Each sample assigned arbitrarily to a processor (along with
corresponding sample vectors ℎ).

• At Each Node: Branching decision made for each sample, Alltoallv computed to
reorganize sample vectors.

• Drawback: Repeated Alltoallv calls are expensive!

77

Non-Randomized Communication Analysis

• Let processor grid dimensions be
𝑃1 × ... × 𝑃𝑁 .

• All-gather + Reduce-Scatter Costs:

2
𝑁

∑
𝑘=1

𝐼𝑅/𝑃𝑘

• Cost Under Optimal Grid:

2𝑁𝑅𝐼
𝑃 1/𝑁

1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

=

Tensor Stationary MTTKRP

All-gather Matrix Reduce-Scatter

Redistribute Downsampled Tensor Stationary

1 2 5 6 3 4 7 8

1
2

5
6

7
8

4
3

78

Downsampled Tensor-Stationary MTTKRP

• Reduce-scatter cost is unchanged by
sampling.

• Minimum communication:

𝑁𝑅𝐼
𝑃 1/𝑁

• Drops at most a constant factor
compared to non-randomized ALS

1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

=

Tensor Stationary MTTKRP

All-gather Downsampled Matrix Reduce-Scatter

Redistribute Downsampled Tensor Stationary

1 2 5 6 3 4 7 8

1
2

5
6

7
8

4
3

79

Downsampled Accumulator-Stationary MTTKRP

• Eliminate reduce-scatter by gathering
sampled rows to all processors,
redistributing sampled nonzeros.

• Communication Cost:

𝐽𝑅𝑁(𝑁 − 1) + 3
𝑃

𝑁
∑
𝑗=1

nnz(mat(𝒯, 𝑗)𝑆⊤
𝑗).

• Avoid retransmitting nonzeros by storing
𝑁 different matricizations of the tensor.

1
2
3
4
5
6
7
8

3 4 7 81 2 5 6

1

2

3

4

5

6

7

8

=

Accumulator Stationary MTTKRP

All-gather Downsampled Matrix Reduce-Scatter

Redistribute Downsampled Tensor Stationary

1
2
3
4
5
6
7
8

80

Tensor-Stationary MTTKRP Load Balance

• We use random permutations of each
tensor mode to evenly distribute
nonzeros & samples to processors.

• Theoretical model: each sampled
column has 𝑞 nonzeros with row i.i.d.
uniform.

• TS Load Balance: 𝐽 balls into 𝑃 1−1/𝑁

bins (each ball here is a column).

=
1 2

3 4

81

Accumulator-Stationary MTTKRP Load Balance

• AS Load Balance: 𝐽𝑞 balls into 𝑃 bins.

• Here, each ball is a nonzero entry.
This distibution has better load
balance when 𝑞 is high.

=

1

2

3

4

82

Load Balance

16 32 64 128

2

4

6

8

M
ax

 /
M

ea
n

N
N

Z
It

er
at

ed

Amazon

16 32 64 128
1.00

1.05

1.10

1.15

1.20
Patents

16 32 64 128
1.00

1.05

1.10

1.15

1.20
Reddit

MPI Ranks (8 Ranks / Node)

Tensor-Stationary Accumulator-Stationary

Figure 15: Load imbalance for tensor-stationary vs. accumulator stationary schedules as a function of MPI rank count.

83

Local Computation: SpMTTKRP is SpMM

min
𝑈𝑗

∥[⨀
𝑘≠𝑗

𝑈𝑘] ⋅ 𝑈⊤
𝑗 − mat(𝒯, 𝑗)⊤∥

𝐹

𝑈3

⊙

⋅

𝑈1

𝑈⊤
2

−

m
at

(𝒯
,2

)

min
𝑈2

𝐹

𝑈2

∶=
mat(𝒯, 2)

⋅
𝑈3

⊙

⋅

𝑈1

𝐺+

MTTKRP

84

Matricized Tensor Storage Format

• CSC: Easy to look up nonzeros, but need atomics when accumulating to output buffer
(with multiple threads)

• CSR: No data races, but difficult to select nonzeros.

• Solution: Use CSC for lookup, sparse transpose into CSR.

85

Sampling and Sparse Transpose Operation

mat(𝒯, 2)

mat(𝒯, 2)𝑆⊤

⋅

𝑆(𝑈3 ⊙ 𝑈1)

∶=𝑡1
𝑡2
𝑡3

Drawback: Need to store 𝑁 copies of the sparse tensor, but we do this anyway to avoid
communication.

86

Weak Scaling

• Weak scaling for non-randomized CP: increase target rank 𝑅 and processor count
proportionally, measure runtime.

• Problems for Randomized CP:
• Nonzero count selected from sparse tensor varies.
• Need higher sample counts at higher ranks to maintain accuracy.

• Solution: Benchmark STS-CP with fixed sample count to maintain accuracy (as
much as possible) for a fixed sample count, measure throughput instead:

Throughput = nnz selected in MTTKRP
Runtime

87

Experimental Platform

• Experiments conducted on up to 16
nodes / 2048 CPU cores on NERSC
Perlmutter at LBNL.

• Hybrid OpenMP / MPI implementation
in C++, Python wrappers using
Pybind11.

• Baseline : SPLATT, a highly-optimized
CP decomposition library.

Figure 16: LBNL Perlmutter, an HPE Cray Supercomputer
(#12 on the Nov’23 Top500).

88

Weak Scaling

2|32 3|48 4|64 5|80 6|96 7|112 8|128 9|144 10|160
Node Count | Rank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Th
ro

ug
hp

ut
 (N

N
Z

/ s
)

1e9

Amazon
Patents
Reddit

Figure 17: Throughput as a function of increasing target rank and node count.

89

	Introduction
	Fast Exact Leverage Score Sampling from Khatri-Rao Products
	High-Performance Randomized CP Decomposition at Scale
	Communication-Avoiding Algorithms for Matrix Completion
	Future Work
	Conclusions and Acknowledgements
	Backup Slides, Deck 1: Fast Khatri-Rao Product Leverage Score Sampling
	Backup Slides, Deck 2: Randomized Distributed CP Decomposition

