

Sampling-Based Sketches for Tensor Train Core Chains

MS12: Applications of Tensors in Scientific Computing, Part III May 13, 2024

Vivek Bharadwaj ^{1, 2}

¹ University of California, Berkeley ² Lawrence Berkeley National Laboratory

Collaborators and Published Work

This presentation covers work in progress with **Beheshteh Rakhshan**, **Guillaume Rabusseau** (MILA Quebec), and **Osman Asif Malik** (formerly Lawrence Berkeley, now Encube Technologies).

The material is tied closely to two recent papers with **Riley Murray** (Sandia), **Laura Grigori** (EPFL), **Aydın Buluç** (LBNL), and **James Demmel** (UC Berkeley):

- [Bha+23] Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition. In NeurIPS 2023.
- [Bha+24] Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. To appear in SPAA 2024.

Introduction

Tensor Trains / Matrix Product States

A **tensor train (TT)** represents a tensor $T \in \mathbb{R}^{I_1 \times ... \times I_N}$ as a contraction of three-dimensional tensor cores $A_1, ..., A_N$.

Cores have dimensions $\mathcal{A}_k \in \mathbb{R}^{R_{k-1} \times I_k \times R_k}$, $1 \le k \le N$, and we impose $R_0 = R_N = 1$. Cores can represent a tensor with I^N elements using $O(NIR^2)$ space.

Tensor Diagram Notation

Figure: A 4D tensor train.

Tensor trains compactly represent high-dimensional tensors and even large vectors / matrices (by first folding them up into high-dimensional tensors).

Example applications:

- Ground state calculation for MPO Hamiltonians [Gel17].
- Krylov methods with vectors in TT format [Al +23].
- Vlasov equation, high-dimensional PDE solvers [YL22].

Our Task: Sketching a Core Chain

- Consider cores $A_1, ..., A_j$, let $A_{\leq j}$ be the *matricization* of the chain.
- Want a linear map (sketch) that reduces row count of A_{≤j}, preserves column space geometry.
- An (ε, δ) -subspace embedding is a distribution over maps $S \in \mathbb{R}^{J \times \prod_{k \leq j} I_k}$. For all $x \in \mathbb{R}^{R_j}$ with high probability $1 - \delta$,

$$(1-\varepsilon) \|A_{\leq j}x\|_{2}^{2} \leq \|SA_{\leq j}x\|_{2}^{2} \leq (1+\varepsilon) \|A_{\leq j}x\|_{2}^{2}$$

Our Contributions

When each input core has a property called left-orthonormality, we give an algorithm to construct an efficient subspace embedding by sampling rows from $A_{\leq j}$.

Theorem (Core Chain Subspace Embedding)

Given left-orthonormal tensor cores $A_1, ..., A_j$, assume for simplicity $I_1 = ... = I_j = I$ and $R_1 = ... = R_j = R$. There exists a data structure with the following properties:

- 1. The DS has construction time $O(IR^3)$ with space overhead linear in the input core sizes.
- 2. The DS randomly draws a single row from $A_{\leq j}$ proportional to its squared row norm in time $O(jR^2 \log I)$.

With this data structure, only $J = O\left(\frac{R}{\varepsilon^2}\log\left(\frac{R}{\delta}\right)\right)$ samples are need for an (ε, δ) -SE.

Context and Prior Work

Tensor Train Decomposition

Sketching Application 1: ALS Fitting

Sketching Application 2: TT Rounding*

- Many operations on TTs (addition, multiplication by matrix-product operator) inflate the rank *R*.
- Want an operation to recompress the TT to some lower rank *r*. Randomized algorithms are particularly effective!
- Main operation: Gram matrix estimation of $A_{\leq j}$ for $1 \leq j < N$. Key ingredient is a structured sketch S to reduce row count of $A_{\leq j}$

Sketching Application 2: TT Rounding*

- Two excellent papers provide upper / lower bounds on complexity of random TT-rounding:
 - Algorithm: Randomized Algorithms for Rounding in the Tensor-Train Format. Al Daas et. al. [Al +23].
 - Lower Bound: Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs . Ma and Solomonik [MS22].
- **Caveat*:** Our result cannot accelerate this application, since we rely on the left-orthonormality property.

The Left-Orthonormality Condition

The operation $mat(A_k, 3)$ is a flattening of A_k into a matrix:

Core \mathcal{A}_k is **left-orthonormal** if $A_k^L = \max(\mathcal{A}_k, 3)$ is orthonormal, i.e. $A_k^{L^{\top}} A_k^L = I$.

Proposition (Left-Orthonormal Core Chain)

If cores $A_1, ..., A_j$ are left-orthonormal, the matrix $A_{\leq j}$ is orthonormal.

Row-Norm Squared Sampling

We will sample rows i.i.d. from matrix $A_{\leq j}$. The *i*-th row is sampled with probability

$$p_i = \frac{1}{R} \|A_{\leq j}[i, :]\|^2$$

Theorem ([Woo14], Adapted)

Let $S \in \mathbb{R}^{J \times \prod_{k \leq j} I_k}$ be a sampling matrix for orthonormal matrix $A_{\leq j}$ that selects rows i.i.d. according to their squared row norms (reweighting them appropriately). There exists constant C so if

$$J \ge CR \frac{\log(2R/\delta)}{\varepsilon^2},$$

then S is an (ε, δ) -subspace embedding for $A_{\leq j}$.

Sampling from Other Tensor Products

- Row-norm-squared sampling from an Kronecker product is trivial (sample independently from each matrix).
- Slightly more complicated for Khatri-Rao product, but doable (use ideas from [DYH19]).
- We are first to demonstrate efficient sampling from left-orthonormal TT core chains.

Sampling for Tensor Train Core Chains | Vivek Bharadwaj

Efficient Core Chain Sketching

Conditional Sampling from $A_{\leq j}$

- To draw one row from $A_{\leq j}$, we sample one slice from each core $A_j, A_{j-1}, ..., A_1$. Let $\hat{t}_j, ..., \hat{t}_1$ be RVs for each index.
- The product of these slices forms a row from $A \leq j$. Sample each index \hat{t}_k conditioned on $\hat{t}_{k+1}, ..., \hat{t}_j$.
- The order of sampling is counterintuitive; the most efficient matrix multiplication order to materialize a row from $A_{\leq j}$ starts by slicing A_1 .

Step 1: Sample Column Uniformly from $A_{\leq j}$

• Let the target distribution be

$$q := \frac{1}{R} \left(A_{\leq j} \left[:, 1 \right]^2 + \dots + A_{\leq j} \left[:, R \right]^2 \right)$$

- *q* has the form of a **mixture distribution**. Can sample a column uniformly at random, then restrict ourselves to sampling from the squared entry distribution on that column.
- We reap a **computational advantage** through this restriction.

Step 2: Form the Conditional Distribution

Suppose that we have selected column $\hat{r} = r$ and $\hat{t}_{k+1} = t_{k+1}, ..., \hat{t}_j = t_j$ for index $k \leq j$. Define "history vector" $h_{>k} \in \mathbb{R}^R$ as

$$h_{>k} := \mathcal{A}_{k+1} [:, t_{k+1}, :] \cdot \ldots \cdot \mathcal{A}_j [:, t_j, :] \cdot e_r$$

where e_r is the *r*-th standard basis vector.

Lemma (Conditional distribution for \hat{t}_k)

Suppose we impose a conditional distribution on \hat{t}_k given by

$$p(\hat{t}_k = t_k \mid \hat{t}_{>k} = t_{>k} \land \hat{r} = r) = \|\mathcal{A}_k[:, t_k, :] \cdot h_{>k}\|_2^2.$$

Then the joint RV $(\hat{t}_1,...,\hat{t}_j)$ follows the squared row norm distribution on $A_{\leq j}$.

Note: without step 1, $h_{>k}$ would be a matrix.

Step 3: Sample the Conditional Distribution

We have a data structure to efficiently sample from the prior distribution! Flatten core A_k into its left-matricization, apply the following lemma:

Lemma ([Bha+23], Adapted)

Given a matrix $A \in \mathbb{R}^{IR \times R}$, there exists a data structure with the following properties:

- Its construction time is $O(IR^3)$ with space overhead $O(IR^2)$.
- Given any vector $h \in \mathbb{R}^R$, it can draw a single sample from the un-normalized distribution of weights $(A \cdot h)^2$ in time $O(R^2 \log I)$.

Experiments and Further Work

Verifying Sampler Correctness

Figure: Sampling from the left subchain of an $16 \times 16 \times 16$ TT-tensor with rank 4.

Sampling for Tensor Train Core Chains | Vivek Bharadwaj

FROSTT Sparse Tensor Train ALS Fitting

Tensor	Dimensions	NNZ	Prep.
Uber Enron	183 x 24 x 1.1K x 1.7K 6K x 5.7K x 244K x 1.2K	3.3M 54M	- log
NELL-2	12K x 9.1K $ imes$ 29K	77M	-

Figure: Accuracy vs. time for three FROSTT tensors, R = 6, $J = 2^{16}$ for our randomized ALS algorithm.

Sampling for Tensor Train Core Chains | Vivek Bharadwaj

Accuracy and Per-Iteration Speedup

Tensor	R	RS Fit	Exact ALS Fit	Avg. Speedup of RS over Exact
	4	0.1332	0.1334	4.0×
	8	0.1646	0.1654	3.0×
Uber	12	0.1828	0.1846	1.5x
	4	0.0498	0.0507	17.8x
	8	0.0669	0.0711	10.5×
Enron	12	0.0810	0.0856	7.4×
	4	0.0213	0.0214	26.0x
	8	0.0311	0.0317	22.2x
NELL-2	12	0.0382	0.0394	15.8×

Table: Average Fits and speedup, $J = 2^{16}$ for randomized algorithms, 40 ALS iterations.

Work in Progress

- Row-norm squared sampling is simple for Kronecker and Khatri-Rao products. Our work shows that it is also efficient for TT chains.
- We are actively searching for other (low-error) sparse tensors and other applications for our subspace embedding algorithm.
- Want to develop related tools for non-orthogonal chains, if possible. Could accelerate tensor train rounding.
- If any of these techniques / results interest you, please come talk to me!

Thank you, questions welcome.

References I

- [Al +23] Hussam Al Daas, Grey Ballard, Paul Cazeaux, Eric Hallman, Agnieszka Międlar, Mirjeta Pasha, Tim W. Reid, and Arvind K. Saibaba. "Randomized Algorithms for Rounding in the Tensor-Train Format". In: SIAM Journal on Scientific Computing 45.1 (2023), A74–A95. DOI: 10.1137/21M1451191.
- [Bha+23]Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Laura Grigori, Aydın Buluç, and James Demmel. "Fast
Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition".
In: Thirty-seventh Conference on Neural Information Processing Systems. Dec. 2023.
- [Bha+24] Vivek Bharadwaj, Osman Asif Malik, Riley Murray, Laura Grigori, Aydın Buluç, and James Demmel. "Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition". In: Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures. SPAA '24. Nantes, France: Association for Computing Machinery, 2024.
- [DYH19] QIN DING, Hsiang-Fu Yu, and Cho-Jui Hsieh. "A Fast Sampling Algorithm for Maximum Inner Product Search". In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR, Apr. 2019, pp. 3004–3012.

References II

- [Gel17] Patrick Gelß. "The tensor-train format and its applications". PhD thesis. Freien Universität Berlin, 2017.
- [Mal22] Osman Asif Malik. "More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees". In: Proceedings of the 39th International Conference on Machine Learning. Vol. 162. Proceedings of Machine Learning Research. PMLR, July 2022, pp. 14887–14917.
- [MS22] Linjian Ma and Edgar Solomonik. "Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs". In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc., 2022, pp. 38980–38993.
- [Woo14] David P. Woodruff. "Sketching as a Tool for Numerical Linear Algebra". In: Foundations and Trends® in Theoretical Computer Science 10.1 (2014), pp. 1–157. ISSN: 1551-305X, 1551-3068. DOI: 10.1561/040000060. URL: http://arxiv.org/abs/1411.4357.
- [YL22]
 Erika Ye and Nuno F. G. Loureiro. "Quantum-inspired method for solving the Vlasov-Poisson equations".

 In: Phys. Rev. E 106 (3 Sept. 2022), p. 035208, DOI: 10.1103/PhysRevE.106.035208.

Backup Slides

Oblivious Subspace Embeddings

- An **oblivious** subspace embedding doesn't require any prior information about A.
- Choose S as:
 - An i.i.d. Gaussian / Rademacher random matrix
 - A Countsketch / Sparse Sign Embedding (fixed nnz per column)
 - A composition of a random diagonal, FFT-like operator, and uniform sparse sampler

i.i.d. Gaussian	Countsketch
$\begin{bmatrix} -0.01 & -0.39 & 0.37 \\ -0.47 & 0.74 & -0.10 \end{bmatrix}$	$\begin{bmatrix} +1 & 0 & +1 \\ 0 & -1 & 0 \end{bmatrix}$

Leverage Scores and Linear Least-Squares

When $A_{\leq j}$ is orthonormal, the squared norm of each row is equal to its **leverage score**. Leverage score sampling can accelerate linear least squares:

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$\tilde{X} := \arg\min_{\tilde{X}} \left\| SA\tilde{X} - SB \right\|_{F}$$

If $J \gtrsim R \max(\log(R/\delta), 1/(\varepsilon \delta))$, then with probability at least $1 - \delta$,

$$\left\|A\tilde{X} - B\right\|_F \le (1+\varepsilon)\min_X \|AX - B\|_F.$$