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Collaborators and Published Work

This presentation covers work in progress with Beheshteh Rakhshan, Guillaume Rabusseau

(MILA Quebec), and Osman Asif Malik (formerly Lawrence Berkeley, now Encube Technologies).

The material is tied closely to two recent papers with Riley Murray (Sandia), Laura Grigori

(EPFL), Aydın Buluç (LBNL), and James Demmel (UC Berkeley):

• [Bha+23] Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications

to Tensor Decomposition. In NeurIPS 2023.

• [Bha+24] Distributed-Memory Randomized Algorithms for Sparse Tensor CP

Decomposition. To appear in SPAA 2024.
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Introduction



Tensor Trains / Matrix Product States

A tensor train (TT) represents a tensor T ∈ RI1×...×IN as a contraction of three-dimensional

tensor coresA1, ...,AN .

Tensor Train

Cores have dimensionsAk ∈ RRk−1×Ik×Rk , 1 ≤ k ≤ N , and we imposeR0 = RN = 1. Cores
can represent a tensor with IN elements usingO(NIR2) space.
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Tensor Diagram Notation

A1 A2 A3 A4

Figure: A 4D tensor train.

Tensor trains compactly represent high-dimensional tensors and even large vectors /

matrices (by first folding them up into high-dimensional tensors).

Example applications:

• Ground state calculation for MPO Hamiltonians [Gel17].

• Krylov methods with vectors in TT format [Al +23].

• Vlasov equation, high-dimensional PDE solvers [YL22].
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Our Task: Sketching a Core Chain

• Consider coresA1, ...,Aj , letA≤j be the

matricization of the chain.

• Want a linear map (sketch) that reduces row

count ofA≤j , preserves column space geometry.

• An (ε, δ)-subspace embedding is a distribution

over maps S ∈ RJ×
∏

k≤j Ik . For all x ∈ RRj with

high probability 1− δ,

(1− ε) ‖A≤jx‖22 ≤ ‖SA≤jx‖22 ≤ (1 + ε) ‖A≤jx‖22

A1

A2

A3

= A≤3 I1I2I3

R3

Sampling for Tensor Train Core Chains | Vivek Bharadwaj 5/26



Our Contributions

When each input core has a property called left-orthonormality, we give an algorithm to

construct an efficient subspace embedding by sampling rows fromA≤j .

Theorem (Core Chain Subspace Embedding)

Given left-orthonormal tensor coresA1, ...,Aj , assume for simplicity I1 = ... = Ij = I and

R1 = ... = Rj = R. There exists a data structure with the following properties:

1. The DS has construction timeO(IR3) with space overhead linear in the input core sizes.

2. The DS randomly draws a single row fromA≤j proportional to its squared row norm in

timeO(jR2 log I).

With this data structure, only J = O
(
R
ε2 log

(
R
δ

))
samples are need for an (ε, δ)-SE.
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Context and Prior Work



Tensor Train Decomposition

Reshape
SVD

Reshape

SVD

Reshape

Final Representation

Crude / Random Initialization

Optimize Core 1

Optimize Core 2

More Iterations

Final Representation

SVD-Based Algorithm Iterative Algorithm

Optimize Core 3 Optimize Core 2

Optimize Core 1
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Sketching Application 1: ALS Fitting

Reshaped TensorDesign Matrix
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Sketching Application 2: TT Rounding*

• Many operations on TTs (addition, multiplication

by matrix-product operator) inflate the rankR.

• Want an operation to recompress the TT to some

lower rank r. Randomized algorithms are

particularly effective!

• Main operation: Gram matrix estimation ofA≤j

for 1 ≤ j < N . Key ingredient is a structured

sketch S to reduce row count ofA≤j

A1

A2

A3

= A≤3 I1I2I3

R3
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Sketching Application 2: TT Rounding*

• Two excellent papers provide upper / lower

bounds on complexity of random TT-rounding:

• Algorithm: Randomized Algorithms for Rounding

in the Tensor-Train Format. Al Daas et. al. [Al +23].
• Lower Bound: Cost-efficient Gaussian tensor

network embeddings for tensor-structured inputs

. Ma and Solomonik [MS22].

• Caveat*: Our result cannot accelerate this

application, since we rely on the

left-orthonormality property.

A1

A2

A3

= A≤3 I1I2I3

R3
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The Left-Orthonormality Condition

The operation mat(Ak, 3) is a flattening ofAk into a matrix:

AkRk−1 Rk

Ik Rk

IkRk−1

CoreAk is left-orthonormal ifAL
k = mat(Ak, 3) is orthonormal, i.e. AL>

k AL
k = I .

Proposition (Left-Orthonormal Core Chain)

If coresA1, ...,Aj are left-orthonormal, the matrix A≤j is orthonormal.
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Row-Norm Squared Sampling

We will sample rows i.i.d. from matrixA≤j . The i-th row is sampled with probability

pi =
1

R
‖A≤j [i, :]‖2

Theorem ( [Woo14], Adapted)

Let S ∈ RJ×
∏

k≤j Ik be a sampling matrix for orthonormal matrixA≤j that selects rows i.i.d.

according to their squared row norms (reweighting them appropriately). There exists

constant C so if

J ≥ CR
log(2R/δ)

ε2
,

then S is an (ε, δ)-subspace embedding forA≤j .
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Sampling from Other Tensor Products

• Row-norm-squared sampling from an Kronecker product is trivial (sample independently

from each matrix).

• Slightly more complicated for Khatri-Rao product, but doable (use ideas from [DYH19]).

• We are first to demonstrate efficient sampling from left-orthonormal TT core chains.

⊗

Kronecker Product

�

Khatri-Rao Product

A1

A2

TT Core Chain
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Efficient Core Chain Sketching



Conditional Sampling from A≤j

• To draw one row from A≤j , we sample one slice

from each coreAj , Aj−1, ...A1. Let t̂j , ..., t̂1 be RVs

for each index.

• The product of these slices forms a row fromA≤j.
Sample each index t̂k conditioned on t̂k+1, ..., t̂j .

• The order of sampling is counterintuitive; the most

efficient matrix multiplication order to materialize

a row from A≤j starts by slicingA1.

A1

A2

A3

Draw 3: sample t̂1

Draw 2: sample t̂2

Draw 1: sample t̂3

Sampling for Tensor Train Core Chains | Vivek Bharadwaj 14/26



Step 1: Sample Column Uniformly from A≤j

• Let the target distribution be

q :=
1

R

(
A≤j [:, 1]

2
+ ...+A≤j [:, R]

2
)

• q has the form of amixture distribution. Can sample a column uniformly at random, then

restrict ourselves to sampling from the squared entry distribution on that column.

• We reap a computational advantage through this restriction.
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Step 2: Form the Conditional Distribution

Suppose that we have selected column r̂ = r and t̂k+1 = tk+1, ..., t̂j = tj for index k ≤ j.
Define “history vector” h>k ∈ RR as

h>k := Ak+1 [:, tk+1, :] · ... · Aj [:, tj , :] · er

where er is the r-th standard basis vector.

Lemma (Conditional distribution for t̂k)

Suppose we impose a conditional distribution on t̂k given by

p(t̂k = tk | t̂>k = t>k ∧ r̂ = r) = ‖Ak [:, tk, :] · h>k‖22 .

Then the joint RV (t̂1, ..., t̂j) follows the squared row norm distribution on A≤j .

Note: without step 1, h>k would be a matrix.
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Step 3: Sample the Conditional Distribution

We have a data structure to efficiently sample from the prior distribution! Flatten coreAk

into its left-matricization, apply the following lemma:

Lemma ([Bha+23], Adapted)

Given a matrix A ∈ RIR×R, there exists a data structure with the following properties:

• Its construction time isO(IR3) with space overheadO(IR2).

• Given any vector h ∈ RR, it can draw a single sample from the un-normalized distribution

of weights (A · h)2 in timeO(R2 log I).
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Experiments and Further Work



Verifying Sampler Correctness

Figure: Sampling from the left subchain of an 16× 16× 16 TT-tensor with rank 4.
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FROSTT Sparse Tensor Train ALS Fitting

Tensor Dimensions NNZ Prep.

Uber 183 x 24 x 1.1K x 1.7K 3.3M -

Enron 6K x 5.7K x 244K x 1.2K 54M log

NELL-2 12K x 9.1K×29K 77M -
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Figure: Accuracy vs. time for three FROSTT tensors,R = 6, J = 216 for our randomized ALS algorithm.
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Accuracy and Per-Iteration Speedup

Tensor R RS Fit Exact ALS Fit Avg. Speedup of RS over Exact

Uber

4 0.1332 0.1334 4.0x

8 0.1646 0.1654 3.0x

12 0.1828 0.1846 1.5x

Enron

4 0.0498 0.0507 17.8x

8 0.0669 0.0711 10.5x

12 0.0810 0.0856 7.4x

NELL-2

4 0.0213 0.0214 26.0x

8 0.0311 0.0317 22.2x

12 0.0382 0.0394 15.8x

Table: Average Fits and speedup, J = 216 for randomized algorithms, 40 ALS iterations.
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Work in Progress

• Row-norm squared sampling is simple for Kronecker and Khatri-Rao products. Our work

shows that it is also efficient for TT chains.

• We are actively searching for other (low-error) sparse tensors and other applications for

our subspace embedding algorithm.

• Want to develop related tools for non-orthogonal chains, if possible. Could accelerate

tensor train rounding.

• If any of these techniques / results interest you, please come talk to me!
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Thank you, questions welcome.
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Oblivious Subspace Embeddings

• An oblivious subspace embedding doesn’t require any prior information about A.

• Choose S as:

• An i.i.d. Gaussian / Rademacher random matrix
• A Countsketch / Sparse Sign Embedding (fixed nnz per column)
• A composition of a random diagonal, FFT-like operator, and uniform sparse sampler

i.i.d. Gaussian[
−0.01 −0.39 0.37
−0.47 0.74 −0.10

] Countsketch[
+1 0 +1
0 −1 0

]
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Leverage Scores and Linear Least-Squares

When A≤j is orthonormal, the squared norm of each row is equal to its leverage score.

Leverage score sampling can accelerate linear least squares:

Theorem (Leverage Score Sampling Guarantees, [Mal22])

Suppose S ∈ RJ×I is a leverage-score sampling matrix forA ∈ RI×R, and define

X̃ := arg min
X̃

∥∥∥SAX̃ − SB
∥∥∥

F

If J & Rmax(log(R/δ), 1/(εδ)), then with probability at least 1− δ,∥∥∥AX̃ −B
∥∥∥
F
≤ (1 + ε)min

X
‖AX −B‖F .
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