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Sparse Tensor CP Decomposition et

Our Goal: Compute an approximate rank- R Candecomp / PARAFAC decomposition of an
N-dimensional I x ... x I sparse tensor 7.
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Rows of factor matrices are embedding vectors, can be used for pattern / trend
identification [Smi+18], anomaly detection [Mao+14], social network analysis [LK22].
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Parallel Sparse CP is Well-Studied =

Software Source Notes

SPLATT [Smi+15]  CA-Distributed Algorithms, CSF Data Structure
BIGTensor [Par+16] Hadoop MapReduce

ParTI! [LMV18]  GPU Support, HiCOO Data Structure

Genten [PK19] Kokkos Parellelism and Performance Portability

Iterative algorithms for sparse CP decomposition are typically:
® Based on overdetermined linear least-squares with very tall design matrices.
® Communication-bound on distributed-memory clusters.
® Memory-bandwidth bound locally on each processor.

Difficult to performance-model without assumptions on the sparse tensor.

3/29



Randomized Algorithms for CP Decomposition =

Algorithm Source Round Complexity (O notation)
CP-ALS KB09] N(N+DIN7'R

[
CP-ARLS-LEV  [LK22] N(R+ I)R" /(e6)
TNS-CP [Mal22]  N3IR3/(e6)
[
[

GTNE MS22] N2(N'SR35/e% 4 IR?)/e?
STS-CP Bha+23] N(NR3logI + IR?)/(sd)

Table: Complexity of Randomized CP Methods for Dense Tensors

® Several recent works use randomization to reduce CP decomposition runtime.

® Prototype implementations cannot compete with existing optimized, non-randomized
software packages. Could they be made competitive in practice?
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Contributions: Randomized CP at Scale /\lﬂ

® e give high-performance implementations of
STS-CP and CP-ARLS-LEV in the
distributed-memory parallel setting.

® Up to 11x speedup over SPLATT on hundreds of
MPI ranks / thousands of CPU cores.

® To achieve this, we optimize both
communication and computation at several
stages the iterative algorithm for CP
decomposition.
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Figure: Accuracy vs. time, Reddit tensor, R = 100,
512 cores / 4 Perlmutter CPU nodes, 4.7B NNZ.
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Preliminaries and Base Data Distribution
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Alternating Least-Squares CP Decomposition ’A\m

® ALS procedure: Randomly initialize factors Uy, ..., Uy, iteratively optimize one factor at a
time while keeping others constant.

¢ Optimal value for U;:
argminy |AX — B|

where
* A=UN©®..0Ujt1 ©Uj—1 © ... ® U is a Khatri-Rao product

bx

Lol A=l

dz
® B =mat(T,j)"
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lllustrated Least-Squares Problem =
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Randomized Linear Least-Squares et

® Apply sketching operator S to both A and B, solve reduced problem
min g HSAX - SBHF
® Want an (g, §) guarantee on solution quality: with high probability (1 — 4),
HAX BH (1+2)min |AX - B

® Here, restrict S to be a sampling matrix: selects and reweights rows from A and B.
Preserves the sparsity of the matricized tensor.
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Factor and Sparse Matrix Layout et

® Processors arranged in N-dimensional hypercube.

® Factor matrices Uy, ..., Uy distributed by block 0®
rows. Assume that all processors redundantly 006
. . . il 0] <)
compute UjTUj for all j, use identity o*° 5 o o
N I
— AT A — 17,
G=ATA=(R)UU,
Jj=1 9 ;) (€]
(6] 5 [}
® Each processor owns a block of the sparse tensor.
Randomly permute modes to load-balance.
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Bulk-Synchronous Randomized ALS Update )

1. Sampling Identification: Draw rows from U.; that are “influential”.

2. Distributed MTTKRP Communication: Communicate rows of U.; to processors who
require them. After the local computation, reduce the output if necessary.

3. Local MTTKRP Computation: Use the nonzeros of the sparse tensor and gathered rows
to perform a modified sparse-dense matrix multiplication on each processor.
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Technical Contributions
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Distributed Sampling Algorithms =

We devise two distinct sampling strategies with nearly ideal communication scaling.

Sampler Compute Messages Words Communicated
d-CP-ARLS-LEV JN/P JN/P P
d-STS-CP JNR?logI/P NPlogP  JNRlogP/P

® d-CP-ARLS-LEV allows processors to sample independently from each factor matrix block
row. Cheap, but lower final accuracy.

® d-STS-CP performs a random walk down a binary tree to locate each sample index. We
distribute both the tree and the random walk.
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d-CP-ARLS-LEV Parallelization Scheme ’\m

® Keyldea: Sample independently from each factor matrix block row according to a
leverage score distribution.

® et Ui(p") be the block row of U; owned by processor p;. Leverages scores of this block
given by

diag (Uf””w Ufpm)

® Computed locally on each processor without communication. Sampling requires (in
expectation) only a small constant number of words communicated, followed by drawing
samples from the local weights.

® Drawback: Accuracy degrades for high N or R.
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d-STS-CP Parallelization Scheme

P1,P2,P3,DP4
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Optimizing MTTKRP Communication et
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All-gather Dy Matrix [ Red 7 D Tensor [l Stationary

Variable Range

Schedule Communication

I ~10° — 107
Non-Randomized TS 2IRN/PY/N J ~ 103 — 10°
Sampled TS IRN/PYN R ~ 10! — 102
Sampled AS JRN(N —1) N 3_6
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Sparse Transpose in Local MTTKRP =

‘/Jl mat (7T, 2) '

@ L__ :,iT)L,,.
to
t3 s
mat(7,2)ST
S(Us © Ur)

Switch between modified CSC format for nonzero selection, CSR format for kernel execution.
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Experiments
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Experimental Platform

® Experiments conducted on 2048 CPU

cores on NERSC Perlmutter at LBNL.

® Baseline : SPLATT, an optimized
non-randomized decomposition library.
Selected three largest tensors from the
FROSTT collection to benchmark.

Tensor Dimensions NNZ
Amazon 4.8M x1.8M x1.8M 1.7B
Patents 46 x 239K x 239K 3.6B
Reddit 82M x 177K x 8.1M 4.7B

)
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Speedup over SPLATT

Speedup over SPLATT / Iteration

4 Nodes

16 Nodes

Amazon Patents Reddit

Target Rank
I SPLATT I d-STS-CP [0 d-CP-ARLS-LEV
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Strong Scaling Tt
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Conclusions and Summary e

® We provided distributed-memory algorithms for sparse CP decomposition with robust
theoretical guarantees and a distributed-memory communication analysis.

® We demonstrated that our algorithms are practical on billion-scale real-world datasets.

® Our work serves as a case study in combining randomness, sparsity, and
distributed-memory parallel computing.
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Thank you, questions welcome.
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Technical Challenges e

The arithmetic intensity of an algorithm is the ratio of FLOPs / data words moved between
processors. We face to parallel scaling:

1. Sparse linear algebra primitives have far lower intensity than their dense operations.

2. Randomization may decrease computation costs while keeping communication

unchanged.
We achieve both scaling and speedup through key optimizations:
Fully Distributed Randomization- Sparse Transpose for

Random Sampling Tailored MTTKRP Local Computation
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Tensor-Stationary MTTKRP Load Balance et

® Ve use random permutations of each
tensor mode to evenly distribute
nonzeros & samples to processors.

® Theoretical model: each sampled - | B . @
column has g nonzeros with row i.i.d. ° °
uniform.

* TS Load Balance: J balls into P*—1/N L
bins (each ball here is a column).
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® AS Load Balance: Jgq balls into P bins.

distibution has better load balance
when ¢ is high.

® Here, each ball is a nonzero entry. This E
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Randomized Algorithm Accuracy

Tensor R  d-CP-ARLS-LEV d-STS-CP | Exact

25 0.338 0.340 0.340
Amazon 50 0.359 0.366 0.366
75 0.368 0.381 0.382
25 0.451 0.451 0.451
Patents 50 0.467 0.467 0.467
75 0.475 0.475 0.476
25 0.0583 0.0592 | 0.0596
Reddit 50 0.0746 0.0775 | 0.0783
75 0.0848 0.0910 | 0.0922

Table: Average Fits, J = 216, 32 MPI Ranks, 4 Nodes

)
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Comparison of Communication Schedules ’A\m

25

Time for 20 ALS Iterations (s)
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Load Balance ’\m

Amazon Patents Reddit
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