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First part of this talk covers two works involving CP decomposition:

1. Fast Exact Leverage Score Sampling from Khatri-Rao Products with
Applications to Tensor Decomposition. To appear at NeurlPS 2023:
https://arxiv.org/abs/2301.12584

2. Distributed-Memory Randomized Algorithms for Sparse Tensor CP
Decomposition. Under review: https://arxiv.org/abs/22160.05105

Second part of this talk: emerging extensions of above work to tensor-train
decomposition. Collaboration w/ Guillaume Rabusseau, Beheshteh Rakhshan at
U. Montreal.


https://arxiv.org/abs/2301.12584
https://arxiv.org/abs/2210.05105

Sparse Tensor Candecomp / PARAFAC Decomposition

Our Goal: Compute an approximate rank-R CP decomposition of an
N-dimensional I x ... x I sparse tensor 7:
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Focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank R ~ 10°. Assume |I,| = I for all jand I > R.




Alternating Least-Squares CP Decomposition

* ALS procedure: Randomly initialize factors Uy, ..., Uy, iteratively optimize one
factor at a time while keeping others constant.

* Optimal value for U;:
argmin . |[AX — B| .

where
* A=Uy0..0U;; OU;_; ©... O U is a Khatri-Rao product

* B=mat(T,j)"



Randomized Linear Least-Squares

* Apply sketching operator S to both A and B, solve reduced problem

Hlln)”(

* Want an (¢, §) guarantee on solution quality: with high probability (1 — §),
|AX — BH (1+¢)min|AX — B

* Osman talked about Gaussian / TensorSketch operators. Here, restrict S to
be a sampling matrix: selects and reweights rows from A and B.



Effect of Sampling Operator
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* (SPALS, D. Cheng et al. 2016): Sample rows according to approximate
leverage score distribution on A. Worst-case exponential in IV to achieve
(¢,60) guarantee.

* (CP-ARLS-LEV Larsen & Kolda 2022): Similar approximation, hybrid
random-deterministic sampling strategy and practical improvements.

* (TNS-CP, Malik 2022): Samples from exact leverage distribution with
polynomial complexity to achieve (¢, §) guarantee, but linear dependence on
I for each sample.



Our Contributions

Method Round Complexity (6 notation)
CP-ALS N(N+DIVN'R

CP-ARLS-LEV (2022) N(R +I)R"/(£0)

TNS-CP (2022) N3IR3/(e6)

GTNE (2022) N2(NYR35/e® + IR?)/e?

STS-CP (ours, 2023) N(NR®logI + IR?)/(6)

» We build a data structure with runtime logarithmic in the height of the KRP
and quadratic in R to sample from leverage scores of A.

* Yields the STS-CP algorithm: lower asymptotic runtime for randomized CP
decomposition than recent SOTA methods (practical too!)



Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its
rows. Leverage score ¢; of row i is

6= Ali, ] (ATA) AL

Theorem (Leverage Score Sampling Guarantees)
Suppose S € R7*! js a leverage-score sampling matrix for A € R'*E, and define

~

X = argm}%nHSA)? = SBHF

If J = Rmax(log(R/d),1/(gd)), then with probability at least 1 — §,

|ax — BH (1+¢€)min[AX — B,



Leverage Score Sampling

« For I =107, N = 3, matrix A has 10?! rows. Can’t even index rows with 64-bit
integers.

* Instead: draw a row from each of Uy, ..., Uy, return their Hadamard product.
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e Let .§j be a random variable for the row index drawn from U;. Assume
(51, ..., 5y) jointly follows the leverage score distribution on U, © ... © Uy.



The Conditional Distribution of s,
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Key Sampling Primitive

CJ[Z] =C" <h<kh<luUk [iv:]T Uy [iv:]7 >

- Can’t compute ¢ entirely - would cost O(IR?) per sample per mode.

* Imagine we magically had all entries of ¢ - how to sample? Initialize I bins,
J'th has width ¢ [j].

* Choose random real r in [0, 1], find “containing bin” ¢ such that
i—1

qlj <T<Zq

Jj=0

11



Binary Tree Inversion Sampling

 Locate bin via binary search (truncated
to log(1/R) levels)

* Root: branch right iff Z]Ifo qljl <r

« Level 2: branch right iff \Q Q/ \Q
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Key: Can compute summations quickly if we cache information at each node!



Caching Partial Gram Matrices

Let an internal node v correspond to an interval of rows [S(v)...E(v)].

E(v) E(v) .
Z Q[j]: Z c- <h<l\h<ank[>7:] Uk[jv:]’ >
J=5(v) j=S(v)
_C <Ish<k7 Z Uk ]a Uk ]v'] > (1)
j=S(v
=0 <<Lh<kak[S( v): B(v),:] Uy [S() : B(v),],6,)

= C" <h<kh<k7va )

Can compute and store G for ALL nodes v in time O(I R?), storage space O(IR).
Only have to recompute once per ALS round.



Efficient Sampling after Caching

+ At internal nodes, compute
CHh_,hl,,G° G ) in O(R?) time
(read normalization constant from root)

- At leaves, spend O(R?) time to
compute remaining values of ¢q. Can
reduce to O(R?log R), see paper.

« Complexity per sample: O(NR?logI)
(summed over all tensor modes).
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Runtime Benchmarks (LBNL Perlmutter CPU)
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C++ Implementation Linked to OpenBLAS. 1 Node, 128 OpenMP Threads, BLAS3
Construction, BLAS2 Sampling, J = 65, 536 samples.
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Distributed-Memory High-Performance Implementation

» We give high-performance
implementations of STS-CP and
CP-ARLS-LEV scaling to
thousands of CPU cores.

* Up to 11x speedup over SPLATT

» Several communication /
computation optimizations unique

to randomized CP decomposition.
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Accuracy vs. time, Reddit tensor, R = 100,
512 cores / 4 Perlmutter CPU nodes, 4.7
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Tensor-Train Decomposition

The tensor-train decomposition represents a tensor 7 as a contraction between
order-3 “tensor-cores”.

Tensor Train

T(2,3,2)= [ D

j'th core has dimensions R; x |I;| x R, . Represents a tensor with IV elements

using O(NIR?) space when all rank are equal.



Iterative TT Optimization Problems
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Sampling from A _;

Theorem (Orthonormal Subchain Leverage Sampling)

There exists a data structure that costs O(I R?) per tensor train core to build /
update. Forany 1 < j < N, the structure can sample a row from A_;
proportional to it squared row norm in time

O((j —1)R?logI)

Apply same binary tree trick to the left matricizations of each core .4 ;, exploit
orthonormality to reduce complexity. Accelerates TT-ALS.

20



Ongoing Work

 Looking for further applications of orthonormal tensor train sketch.
» Extension to non-orthonormal case challenging, but potentially rewarding.

* If you have an application involving contraction of an unstructured operator
with a tensor-train / MPS, let’s talk!

21



Thank you! Read the work on Arxiv:

https://arxiv.org/abs/2301.12584

https://arxiv.org/abs/2210.05105


https://arxiv.org/abs/2301.12584
https://arxiv.org/abs/2210.05105

