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Introduction



The Khatri-Rao Product

• The Khatri-Rao product (KRP, denoted ⊙) is the column-wise Kronecker
product of two matrices:

[𝑎 𝑏
𝑐 𝑑] ⊙ [𝑤 𝑥

𝑦 𝑧] =
⎡
⎢⎢⎢
⎣

𝑎𝑤 𝑏𝑥
𝑐𝑤 𝑑𝑥
𝑎𝑦 𝑏𝑧

⎤
⎥⎥⎥

𝑐𝑦     𝑑𝑧⎦
• Our goal: efficiently solve an overdetermined linear least-squares problem

min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹

where 𝐴 = 𝑈1 ⊙ ... ⊙ 𝑈𝑁 with 𝑈𝑗 ∈ ℝ∣𝐼𝑗∣×𝑅.
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Motivation

This least-squares problem is the computational bottleneck in alternating
least-squares Candecomp / PARAFAC (CP) decomposition.

Focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank 𝑅 ≈ 102. Assume ∣𝐼𝑗∣ = 𝐼 for all 𝑗 and 𝐼 ≥ 𝑅.
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Randomized Least-Squares

• Well-studied approach: apply sketching operator 𝑆 to both 𝐴 and 𝐵, solve
reduced problem

min𝑋̃ ∥𝑆𝐴𝑋̃ − 𝑆𝐵∥
𝐹

• Want an (𝜀, 𝛿) guarantee on solution quality: with high probability (1 − 𝛿),

∥𝐴𝑋̃ − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖

• Restrict 𝑆 to be a sampling matrix: selects and reweights rows from 𝐴 and 𝐵.
How do we downsample a Khatri-Rao product accurately and efficently?
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Our Contributions

• We design a sampling data structure for the Khatri-Rao product requiring
• Persistent space overhead at most the size of the input

• Runtime logarithmic in the height of the Khatri-Rao product and quadratic in 𝑅
to draw a single sample from the KRP, after moderate one-time costs

• Only 𝑂(𝑅/(𝜀𝛿)) samples to achieve the (𝜀, 𝛿) guarantee (ignoring log 𝑅 factors)

• Yields the STS-CP algorithm: achieves lower asymptotic runtime for
randomized CP decomposition than recent SOTA methods

• STS-CP achieves higher accuracy and faster progress to solution on sparse
tensors with billions of nonzeros
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Complexity Comparison

Method Complexity per ALS Round
CP-ALS 𝑁(𝑁 + 𝐼)𝐼𝑁−1𝑅
CP-ARLS-LEV 𝑁(𝑅 + 𝐼)𝑅𝑁/(𝜀𝛿)
TNS-CP 𝑁3𝐼𝑅3/(𝜀𝛿)
Gaussian Tensor Network Embedding 𝑁2(𝑁1.5𝑅3.5/𝜀3 + 𝐼𝑅2)/𝜀2

STS-CP (ours) 𝑁(𝑁𝑅3 log 𝐼 + 𝐼𝑅2)/(𝜀𝛿)

Factors involving log 𝑅 and log(1/𝛿) omitted.
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Prior Work and Main Result



Leverage Score Sampling

We will sample rows i.i.d. from 𝐴 according to the leverage score distribution on its
rows. Leverage score ℓ𝑖 of row 𝑖 is

ℓ𝑖 = 𝐴 [𝑖, ∶] (𝐴⊤𝐴)+𝐴 [𝑖, ∶]⊤

Theorem (Leverage Score Sampling Guarantees)
Suppose 𝑆 ∈ ℝ𝐽×𝐼 is a leverage-score sampling matrix for 𝐴 ∈ ℝ𝐼×𝑅, and define

𝑋̃ ∶= arg min
𝑋̃

∥𝑆𝐴𝑋̃ − 𝑆𝐵∥
F

If 𝐽 ≳ 𝑅 max(log(𝑅/𝛿), 1/(𝜀𝛿)), then with probability at least 1 − 𝛿,

∥𝐴𝑋̃ − 𝐵∥
𝐹

≤ (1 + 𝜀) min
𝑋

‖𝐴𝑋 − 𝐵‖𝐹
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Leverage Score Sampling

• For 𝐼 = 107, 𝑁 = 3, matrix 𝐴 has 1021 rows. Far too expensive to compute all
leverage scores - can’t even index rows with 64-bit integers.

• Instead: draw a row from each of 𝑈1, ..., 𝑈𝑁 , return their Hadamard product.

[0.1   0.5  -0.9   ... 0.3] [0.0   0.1  0.2   ... 0.9] [-0.8   0.3  0.3   ... -0.9] [-0.8   -0.1  0.5   ... 0.7]

U1
U2 U3 U4

• Let ̂𝑠𝑗 be a random variable for the row index drawn from 𝑈𝑗. Assume
( ̂𝑠1, ..., ̂𝑠𝑁) jointly follows the leverage score distribution on 𝑈1 ⊙ ... ⊙ 𝑈𝑁 .
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A Problem of Dependence

• Problem: Variables are not independent! In general,

𝑝( ̂𝑠2 = 𝑠2) ≠ 𝑝( ̂𝑠2 = 𝑠2 | ̂𝑠1 = 𝑠1)

• How do we deal with the dependence? Several approaches.

Algorithm Preprocessing Sampling Time 𝐽 Required
Precompute all Ω(𝐼𝑁) 𝑂(𝐽𝑁) 𝑂(𝑅/(𝜀𝛿))
Malik et al. 𝑂(𝑁𝐼𝑅2) 𝑂(𝐽𝑁𝑅2𝐼) 𝑂(𝑅/(𝜀𝛿))
Larsen & Kolda 𝑂(𝑁𝐼𝑅2) 𝑂(𝐽𝑁) 𝑂(𝑅𝑁/(𝜀𝛿))
Our Algorithm 𝑂(𝑁𝐼𝑅2) 𝑂(𝑁𝑅3 + 𝐽𝑁𝑅2 log 𝐼) 𝑂(𝑅/(𝜀𝛿))
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Outline of Sampling Procedure



The Conditional Distribution of ̂𝑠𝑘

𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 𝐺

𝐺>𝑘 𝐺+

⊛

⊛

PINV

𝑠1

𝑠2 𝑠3

ℎ⊤
<𝑘⊛

Theorem

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘) ∝ ⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑠𝑘, ∶]⊤ 𝑈𝑘 [𝑠𝑘, ∶], 𝐺>𝑘⟩
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Stage 1: Sample Eigenvector of 𝐺>𝑘

Compute symmetric eigendecomposition 𝐺>𝑘 = 𝑉 Λ𝑉 𝑇 , break the conditional
distribution into components:

1 =
𝐼

∑
𝑠𝑘=1

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘)

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝐺𝑘, 𝐺>𝑘⟩ = 𝐶−1⟨ℎ<𝑘ℎ⊤

<𝑘, 𝐺𝑘, 𝜆1 + ... + 𝜆𝑅
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

𝜆𝑢

⟩

Sample component
in time 𝑂(𝑅2 log 𝑅)
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Stage 2: Sample Row Index Based on Eigenvector

Break remaining sample space further into components:

𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, 𝐺𝑘, 𝜆𝑢𝑉 [∶, 𝑢] 𝑉 [∶, 𝑢]⊤⟩

= 𝐶−1⟨ℎ<𝑘ℎ⊤
<𝑘, + ... +

↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

, 𝜆𝑢 ⟩

Sample row index
in time 𝑂(𝑅2 log(𝐼/𝑅))

Sampling Time: 𝑂 (𝑅2 log(𝐼/𝑅) + 𝑅2 log 𝑅) = 𝑂(𝑅2 log 𝐼)
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Analysis of Sampler Design

• First stage selects a one-dimensional subspace of 𝐺>𝑘.
• Second stage samples according to the squared-norms in a 1-dimensional
inner product space, reducing time / space complexity.

• Without two-stage sampling design, would incur either
• 𝑂(𝑅3 + 𝑅2 log 𝐼) time per sample (ours: 𝑂(𝑅2 log 𝐼))
• 𝑂(𝑁𝐼𝑅2) space usage (ours: 𝑂(𝑁𝐼𝑅))

• Connections to the Maximum Squared Inner Product Search problem.
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Application to ALS CP Decomposition

CP Decomposition: Represents an 𝑁 -dimensional tensor 𝒯 as a weighted sum of
generalized outer products. Iteratively solve least-squares problems of the form

min
𝑈̂𝑗

∥[⨀
𝑘≠𝑗

𝑈𝑘] ⋅ diag(𝜎) ⋅ ̂𝑈⊤
𝑗 − mat(𝒯, 𝑗)⊤∥

𝐹

U3

U(3)U1

U
2 -

m
at

(T
, 2

)

I3 × I1

I2r I2

I3

I1

mat(T, 2):=

U(3)

G+

MTTKRP

U2
U3

U1

diag(σ)

r

min
U2

diag(σ-1)

F
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Experiments



Runtime Benchmarks (LBNL Perlmutter CPU)
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Sparse Tensor Decomposition

Tensor Dimensions Nonzeros

Uber Pickups 183 × 24 × 1,140 × 1,717 3,309,490
Enron Emails 6,066 × 5,699 × 244,268 × 1,176 54,202,099
NELL-2 12,092 × 9,184 × 28,818 76,879,419
Amazon Reviews 4,821,207 × 1,774,269 × 1,805,187 1,741,809,018
Reddit-2015 8,211,298 × 176,962 × 8,116,559 4,687,474,081

• Ran sparse CP decomposition on tensors from the FROSTT collection.
• Compared STS-CP against random and hybrid versions of CP-ARLS-LEV.

• One of few randomized algorithms designed for sparse tensors.
• For an 𝑁 -dimensional tensor, sample complexity is 𝑂(𝑅𝑁−1/(𝜀𝛿)) per solve.
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Accuracy Comparison for Fixed Sample Count
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Accuracy on Individual Least-Squares Problems
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Fit vs. ALS Update Time
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Fit vs. ALS Update Time, Reddit Tensor, 𝑅 = 100.
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Future Work

• Can the quadratic-in-𝑅 sampling cost be reduced?

• Can we apply to other tensor formats (e.g. MPS / tensor train)?

• Work in progress: distributed-memory sampling.
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Thank You! Read the preprint, and try out the code.

https://arxiv.org/abs/2301.12584

https://github.com/vbharadwaj-bk/fast_tensor_leverage
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Comparison to Countsketch

Countsketch Matrix:

⎡
⎢⎢⎢
⎣

0 0 −1 1 0
1 0 0 0 0
0 0 0 0 1
0 −1 0 0 0

⎤
⎥⎥⎥
⎦

One nonzero per column. Every row in
my input is added / subtracted to
exactly one row of my output.

Sampling Matrix:

⎡
⎢⎢⎢
⎣

0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥
⎦

One nonzero per row. Every row in my
output is a copy-pasted row from my
input.

Page 19, “Sketching as a Tool for Numerical Linear Algebra”, Woodruff.



Approaches to KRP Leverage
Score Sampling



Approach 1: Exhaustive Precomputation

• Only a finite number of values for ̂𝑠1. Precompute and store all possible
conditional distributions for ̂𝑠2, and similarly for ̂𝑠3, ̂𝑠4...

• Preprocessing time is Ω (𝐼𝑁), not viable for large 𝐼 .

Preprocessing Time Time for 𝐽 Samples # Samples Required
Ω(𝐼𝑁) 𝑂(𝐽𝑁) 𝑂(𝑅/(𝜀𝛿))



Approach 2: Ignore the Dependence

• Sample independently from 𝑈1, ..., 𝑈𝑁 based on the leverage scores of each
factor matrix. Approach used by Cheng et al., Larsen and Kolda.

• No longer sampling from the exact leverage score distribution, so require
𝑂(𝑅𝑁/(𝜀𝛿)) samples to achieve the (𝜀, 𝛿) guarantee.

• Efficient if 𝑅, 𝑁 low enough. Can easily update if one matrix 𝑈𝑗 changes.

Preprocessing Time Time for 𝐽 Samples # Samples Required
𝑂(𝑁𝐼𝑅2) 𝑂(𝐽𝑁) 𝑂(𝑅𝑁/(𝜀𝛿))



Approach 3: Compute Full Conditional Distribution for each Sample

• Compute the full conditional distribution 𝑝( ̂𝑠2 = 𝑠2 | ̂𝑠1 = 𝑠1) for each draw
during sampling. Approach used by Malik et al. (TNS-CP).

• Costs 𝑂(𝐼𝑅2) per matrix 𝑈𝑗 per sample.
• Works well if 𝐼 is low enough (many dense tensor applications), but
performance degrades for 𝐼 ≥ 103.

Preprocessing Time Time for 𝐽 Samples # Samples Required
𝑂(𝑁𝐼𝑅2) 𝑂(𝐽𝑁𝑅2𝐼) 𝑂(𝑅/(𝜀𝛿))



Approach 4: Segment Tree Sampling (Ours)

• View the conditional distribution as a mixture of several components.
• After preprocessing, sample a component of the mixture via binary search
without computing all values from the conditional distribution.

• For 𝑅 ≈ 102, we achieve a sampling time that is practical for sparse tensor
decomposition with mode sizes in the tens of millions.

Preprocessing Time Time for 𝐽 Samples # Samples Required
𝑂(𝑁𝐼𝑅2) 𝑂(𝑁𝑅3 + 𝐽𝑁𝑅2 log 𝐼) 𝑂(𝑅/(𝜀𝛿))



Main Theorem

Theorem
Given matrices 𝑈1, ..., 𝑈𝑁 , 𝑈𝑗 ∈ ℝ𝐼×𝑅 ∀𝑗, there exists a data structure with the
following properties:

1. Its construction time is 𝑂 (𝑁𝐼𝑅2), and its storage cost is 𝑂 (𝑁𝐼𝑅). If matrix
𝑈𝑗 changes, it can be updated in time 𝑂(𝐼𝑅2)

2. Using 𝑂(𝑅3) scratch space, it can draw 𝐽 samples from the KRP
𝑈1 ⊙ ... ⊙ 𝑈𝑁 according the leverage score distribution on its rows in time

𝑂 (𝑁𝑅3 + 𝐽𝑁𝑅2 log 𝐼) .

It can also draw samples from the KRP of all matrices excluding one.



Complete Proof of Main Result



Part 1: Segment Tree Sampling

• Given probability distribution 𝑞1, ..., 𝑞𝐼 , how do you sample from it efficiently?

• Simple Algorithm: Binary-Search Inversion Sampling
1. Divide [0, 1] into 𝐼 bins. Bin 𝑖 has endpoints [∑𝑖−1

𝑗=0 𝑞𝑗, ∑𝑖
𝑗=0 𝑞𝑗).

2. For each sample, draw a real number 𝐷 uniformly from [0, 1]. Binary search on
the list of endpoints to find the containing bin, return its index.

• Preprocessing cost: 𝑂(𝐼) (prefix sum). Per-sample cost: 𝑂(log 𝐼) (binary
search).



Part 1: Segment Tree Sampling

Modify the previous procedure as follows:
• Binary search until remaining interval has
at most 𝐹 bins, iterate through what
remains to find bin containing 𝐷.

• View as a traversal of a segment tree 𝑇𝐼,𝐹
from root to a leaf. Each node equipped
with segment 𝑆(𝑣) ⊆ [1..𝐼].

• Key: At internal nodes, don’t need
individual probabilities 𝑞𝑗 - only their sum.

[1..8]

[1..4]

[1, 2] [3, 4]

[5..8]

[5, 6] [7, 8]

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8



Part 1: Segment Tree Sampling

Define functions 𝑚̃ ∶ 𝑇𝑛,𝐹 → ℝ+ and
̃𝑞 ∶ 𝑇𝑛,𝐹 → ℝ𝐹

+ . Use these functions
to branch at internal nodes and
search the leaf intervals 𝑆(𝑣).

Proposition
If 𝑚̃(𝑣) = ∑𝑖∈𝑆(𝑣) 𝑞𝑖 and

̃𝑞(𝑣) = {𝑞𝑖 | 𝑖 ∈ 𝑆(𝑣)} at each leaf,
STSample returns index 𝑖 with
probability 𝑞𝑖.

Algorithm 1 STSample(𝑇𝐼,𝐹 , 𝑚̃(⋅), ̃𝑞(⋅))

1: 𝑐 ∶= root(𝑇𝐼,𝐹 ), low = 0.0, high = 1.0
2: Sample 𝐷 ∼ Uniform(0.0, 1.0)
3: while 𝑐 ∉ leaves(𝑇𝐼,𝐹 ) do
4: cutoff ∶= low + 𝑚̃(𝐿(𝑐))
5: if cutoff ≥ 𝐷 then
6: 𝑐 ∶= 𝐿(𝑐), high ∶= cutoff
7: else
8: 𝑐 ∶= 𝑅(𝑐), low ∶= cutoff
9: return 𝑆0(𝑣) + argmin𝑖≥0 (low + ∑𝑖

𝑗=1 ̃𝑞(𝑐) [𝑗] < 𝐷)



Part 1: Segment Tree Sampling

• If 𝑚̃ runs in time 𝜏1 per call and ̃𝑞 runs in time 𝜏2(𝐹) per call, the complexity of
STSample is

𝑂(𝜏1 log⌈𝐼/𝐹⌉ + 𝜏2(𝐹))

• If we have efficient functions to compute 𝑚̃ and ̃𝑞, we can avoid a linear factor
𝐼 when drawing each sample.



Part 2: A Simpler Row Sampling Problem

• Suppose we wish to sample 𝐽 rows from a matrix 𝐴 ∈ ℝ𝐼×𝑅. Let ̂𝑠 be the RV
for a sample index, ℎ ∈ ℝ𝑅, 𝑌 ∈ ℝ𝑅×𝑅 be a vector and a p.s.d. matrix.

• Impose

𝑝( ̂𝑠 = 𝑠 | ℎ, 𝑈, 𝑌 ) ∶= 𝑞ℎ,𝑈,𝑌 [𝑠] ∶= 𝐶−1⟨ℎℎ⊤, 𝑈 [𝑠, ∶]⊤ 𝑈 [𝑠, ∶] , 𝑌 ⟩

Here, ⟨⋅, ⋅, ⋅⟩ means ”multiply three matrices elementwise, take sum of all
entries in product” (generalized inner product).

• The twist: 𝑌 is the same for all row samples, but ℎ is potentially unique for
each one.



Part 2: A Simpler Row Sampling Problem

• Solution: initialize a segment tree 𝑇𝐼,𝐹 . For any segment 𝑆(𝑣) associated with
a node 𝑣, sum both sides:

∑
𝑠∈𝑆(𝑣)

𝑝( ̂𝑠 = 𝑠 | ℎ, 𝑈, 𝑌 ) = ∑
𝑠∈𝑆(𝑣)

𝐶−1⟨ℎℎ⊤, 𝑈 [𝑠, ∶]⊤ 𝑈 [𝑠, ∶] , 𝑌 ⟩

= 𝐶−1⟨ℎℎ⊤, ∑
𝑠∈𝑆(𝑣)

𝑈 [𝑠, ∶]⊤ 𝑈 [𝑠, ∶] , 𝑌 ⟩

∶= 𝐶−1⟨ℎℎ⊤, 𝐺𝑣, 𝑌 ⟩
• If 𝐺𝑣 is precomputed for each node 𝑣 ∈ 𝑇𝐼,𝐹 , last line of equation above
computable in 𝑂(𝑅2) time. Produces efficient function 𝑚̃ for STSample.



Part 2: A Simpler Row Sampling Problem

Lemma (Efficient Row Sampler)
There is a data structure parameterized by integer 𝐹 that, given a matrix 𝐴 and a
p.s.d. matrix 𝑌 , satisfies the following:

• Has construction time 𝑂(𝐼𝑅2) and space complexity 𝑂(𝑅2⌈𝐼/𝐹⌉).
• After construction, produces sample from 𝑞ℎ,𝑈,𝑌 in time

𝑂(𝑅2 log⌈𝐼/𝐹⌉ + 𝐹𝑅2) for any vector ℎ.
• If 𝑌 is a matrix of all ones, the time per sample drops to 𝑂(𝑅2 log⌈𝐼/𝐹⌉ + 𝐹𝑅).

Main Proof Idea: Precompute matrices 𝐺𝑣 in construction phase, call STSample
during the sampling phase.



Part 3: Assembling the Khatri-Rao Product Sampler

[0.1   0.5  -0.9   ... 0.3] [0.0   0.1  0.2   ... 0.9] [-0.8   0.3  0.3   ... -0.9] [-0.8   -0.1  0.5   ... 0.7]

U1
U2 U3 U4

• Let 𝐴 = 𝑈1 ⊙ ... ⊙ 𝑈𝑁 . Let 𝐺𝑘 = 𝑈⊤
𝑘 𝑈𝑘, 𝐺 = ⊛𝑁

𝑘=1 𝐺𝑘.
• Suppose we have sampled ̂𝑠1 = 𝑠1, ..., ̂𝑠𝑘−1 = 𝑠𝑘−1. Define

ℎ<𝑘 =
𝑘−1⊛
𝑖=1

𝑈𝑖 [𝑠𝑖, ∶]

𝐺>𝑘 = 𝐺+ ⊛
𝑁⊛

𝑖=𝑘+1
𝐺𝑖



Part 3: Assembling the Khatri-Rao Product Sampler

• What is the distribution of ̂𝑠𝑘 conditioned on prior draws?

Theorem (Heavily Adapted Version of Malik 2022)

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠1 = 𝑠1... ̂𝑠𝑘−1 = 𝑠𝑘−1) = 𝑞ℎ<𝑘,𝑈𝑘,𝐺>𝑘
[𝑠𝑘]

• Matches our lemma! Use the data structure that we developed earlier.



Part 3: Assembling the Khatri-Rao Product Sampler

𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠1 = 𝑠1... ̂𝑠𝑘−1 = 𝑠𝑘−1) = 𝑞ℎ<𝑘,𝑈𝑘,𝐺>𝑘
[𝑠𝑘]

• If lemma applied directly to conditional distribution 𝑝( ̂𝑠𝑘 = 𝑠𝑘 | ̂𝑠<𝑘 = 𝑠<𝑘), you
either incur

• 𝑂(𝐼𝑅2) space complexity for 𝐹 = 1
• 𝑂(𝑁𝑅3 log 𝐼) time per sample for 𝐹 = 𝑅

• To fix: observe that 𝐺>𝑘 is p.s.d., identical for all samples. Take its
eigendecomposition

𝐺>𝑘 = 𝑉 Λ𝑉 ⊤



Part 3: Assembling the Khatri-Rao Product Sampler

• Define matrix 𝑊 ∈ ℝ𝐼×𝑅 elementwise by

𝑊 [𝑡, 𝑢] ∶= ⟨ℎ<𝑘ℎ⊤
<𝑘, 𝑈𝑘 [𝑡, ∶]⊤ 𝑈𝑘 [𝑡, ∶] , 𝑉 [∶, 𝑢] 𝑉 [∶, 𝑢]⊤⟩

• After some manipulation, we can write

𝑞ℎ<𝑘,𝑈𝑘,𝐺>𝑘
=

𝑅
∑
𝑢=1

𝑒 [𝑢] 𝑊 [∶, 𝑢]
‖𝑊 [∶, 𝑢]‖1

,

where 𝑒 [𝑢] = 𝜆𝑢 ∥𝑊 [∶, 𝑢]1∥. Since 𝜆𝑢 ≥ 0, this is a mixture distribution.
Sample in two steps:

• Choose a component 𝑢 according to weight vector 𝑒
• Sample an index in 𝐼𝑘 according to 𝑊 [∶, 𝑢].



Part 3: Assembling the Khatri-Rao Product Sampler

• Let 𝑒 be a normalized version of 𝑒. Manipulation yields

𝑒 = 𝑞ℎ<𝑘,
√

Λ𝑉 ⊤,𝐺𝑘

Use our lemma with 𝐹 = 1 to efficiently select a component.
• Suppose we select component 𝑢̂ = 𝑢. Then the row index ̂𝑡 drawn according
to distribution 𝑊 [∶, 𝑢] is distributed as

𝑝( ̂𝑡 = 𝑡 | 𝑢̂ = 𝑢) = 𝑞ℎ<𝑘⊛𝑉 [∶,𝑢],𝑈𝑘,[1] [𝑡] .

Use our lemma again with 𝐹 = 𝑅 to draw a row index.



Part 3: Assembling the Khatri-Rao Product Sampler

• First sampling phase reduces the gram matrix 𝐺>𝑘 to an outer product from
one of its eigenvectors. Reduces runtime for procedure ̃𝑞 in the second
sampling phase

• Second sampling phase can choose 𝐹 = 𝑅 to control space complexity.



Application to ALS CP Decomposition

Corollary (STS-CP)
Suppose 𝒯 is dense, and suppose we solve each least-squares problem in ALS
with a randomized method. Leverage score sampling using our data structure
achieves the (𝜀, 𝛿) guarantee with 𝑂(𝑅/(𝜀𝛿)) samples. The overall complexity is

𝑂 (#it ⋅ 𝑁
𝜀𝛿 (𝑁𝑅3 log 𝐼 + 𝐼𝑅2))

For sparse tensors, STS-CP preserves tensor sparsity in the downsampled
least-squares problem.



Additional Results



Reference Implementation

Algorithm 2 Snippet of KRPSample Pseudocode
1: ...
2: for 𝑑 = 1..𝐽 do
3: ℎ = [1, ..., 1]⊤
4: for 𝑘 ≠ 𝑗 do
5: 𝑢̂𝑘 ∶= RowSample(𝐸𝑘, ℎ)
6: ̂𝑡𝑘 ∶= RowSample(𝑍𝑘, ℎ ⊛ (𝑉𝑘 [∶, 𝑢̂𝑘]))
7: ℎ ∗= 𝑈𝑘 [ ̂𝑡𝑘, ∶]
8: 𝑠𝑑 = ( ̂𝑡𝑘)𝑘≠𝑗
9: return 𝑠1, ..., 𝑠𝐽

Python Reference Implementation
1 ...
2 samples = []
3 for _ in range(J):
4 h = np.ones(self.R)
5 sample = []
6 for k in range(self.N):
7 if k == j:
8 continue
9 u_k = E_samplers[k].RowSample(h)

10 h_scl = h * Lambda_VT[k][u_k]
11 t_k = self.Z_samplers[k].RowSample(h_scl)
12 h *= self.U[k][t_k, :]
13 sample.append(t_k)
14 samples.append(sample)
15 return samples



Verifying Our Sampler’s Output
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Fit vs. ALS Update Time
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Fit vs. ALS Update Time, 𝑅 = 100.



Discussion

• Theoretically superior sample complexity of STS-CP verified through
experiments.

• Higher accuracy per least-squares solve for STS-CP translates to better final
tensor fit.

• The runtime overhead of STS-CP is justified on sparse tensors with billions of
nonzeros.

• On smaller tensors, STS-CP may benefit from dynamically adapting the
sample count 𝐽 .
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