ssssssssssssss

;W ,, ENERGY
BERKELEY LAB Coanm

Fast Exact Leverage Score Sampling from
Khatri-Rao Products with Applications to Tensor
Decomposition

Vivek Bharadwaj ', Osman Asif Malik 2, Riley Murray 22", Laura Grigori 4,
Aydin Bulug 2!, James Demmel *

1 Electrical Engineering and Computer Science Department, UC Berkeley
2 Computational Research Division, Lawrence Berkeley National Lab
3 International Computer Science Institute

4 Sorbonne Université, Inria, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions

Introduction

The Khatri-Rao Product

» The Khatri-Rao product (KRP, denoted ©) is the column-wise Kronecker
product of two matrices:

» Our goal: efficiently solve an overdetermined linear least-squares problem

m)%n IAX — B,

where A = U, ... © Uy with U, € RILI*E,

This least-squares problem is the computational bottleneck in alternating
least-squares Candecomp / PARAFAC (CP) decomposition.

U U LRI
\ U1l U R]

o, +...+ O
Pt U1 ULRI
—
o
U'\ UZ U3

Focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank R ~ 10?. Assume |I,| = I for all jand I > R.

Randomized Least-Squares

» Well-studied approach: apply sketching operator S to both A and B, solve
reduced problem

Hlln)“(

* Want an (g, §) guarantee on solution quality: with high probability (1 — §),
|AX — BH (1+¢€)min|AX — B

» Restrict S to be a sampling matrix: selects and reweights rows from A and B.
How do we downsample a Khatri-Rao product accurately and efficently?

Our Contributions

» We design a sampling data structure for the Khatri-Rao product requiring
 Persistent space overhead at most the size of the input

* Runtime logarithmic in the height of the Khatri-Rao product and quadratic in R
to draw a single sample from the KRP, after moderate one-time costs

* Only O(R/(¢d)) samples to achieve the (e, §) guarantee (ignoring log R factors)

* Yields the STS-CP algorithm: achieves lower asymptotic runtime for
randomized CP decomposition than recent SOTA methods

» STS-CP achieves higher accuracy and faster progress to solution on sparse
tensors with billions of nonzeros

Complexity Comparison

Method Complexity per ALS Round
CP-ALS NN+ DIV 'R
CP-ARLS-LEV N(R + I)RN /(&)

TNS-CP N3IR3(£0)

Gaussian Tensor Network Embedding N?(N'°R3% /&3 + IR?) /<2
STS-CP (ours) N(NR3logI + IR?)/(&f)

Factors involving log R and log(1/§) omitted.

Prior Work and Main Result

Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its
rows. Leverage score ¢; of row i is

6= Ali,] (ATA) AL

Theorem (Leverage Score Sampling Guarantees)
Suppose S € R7*! js a leverage-score sampling matrix for A € R'*E, and define

~

X = argm}%nHSA)? = SBHF

If J = Rmax(log(R/d),1/(gd)), then with probability at least 1 — §,

|ax — BH (1+¢€)min[AX — B,

Leverage Score Sampling

« For I =107, N = 3, matrix A has 10?! rows. Far too expensive to compute all
leverage scores - can’t even index rows with 64-bit integers.

* Instead: draw a row from each of Uy, ..., Uy, return their Hadamard product.

[0.1 05 -09 ..03] [0.0 0.1 0.2 ..0.9] [-08 0303 .. -O.ﬂ q{ [-0.8 -0.1 05 .. 0.3
u, u,

u V)

1 2

e Let .§j be a random variable for the row index drawn from U;. Assume
(51, ..., 5y) jointly follows the leverage score distribution on U, © ... © Uy.

A Problem of Dependence

* Problem: Variables are not independent! In general,

P(8y = 85) F (55 = 55| 51 = 51)

* How do we deal with the dependence? Several approaches.

Algorithm Preprocessing Sampling Time J Required
Precompute all Q) O(JN) O(R/(g9))
Malik et al. O(NIR?) O(JNRI) O(R/(e0))
Larsen & Kolda O(NIR?) O(JN) O(RY /(£6))
Our Algorithm O(NIR?) O(NR3+ JNR?logI) | O(R/(g6))

Outline of Sampling Procedure

The Conditional Distribution of s,

$1
So PINV
I 53
hT
<k G +
® - 0 ® G
Theorem
P8k = s | 5ok = scp) < (hophly, Up[sp i Up s,)

Stage 1: Sample Eigenvector of G_,

Compute symmetric eigendecomposition G, = VAV'", break the conditional
distribution into components:

Wl Gy Gy = C*1< IANNENDY e +)\RH:'>

Sample component
in time O(R?log R)

Stage 2: Sample Row Index Based on Eigenvector

Break remaining sample space further into components:

Cil <h<kh—r Gk’)‘uV [:a u] Vv [:a U]T>

<k

_ C*1<h<khzk, |_+ ot I_, Auﬂ':'>

Sample row index
in time O(R?log(I/R))

Sampling Time: O (R%log(I/R) + R*log R) = O(R?logI)

11

Analysis of Sampler Design

* First stage selects a one-dimensional subspace of G,

» Second stage samples according to the squared-norms in a 1-dimensional
inner product space, reducing time / space complexity.

Without two-stage sampling design, would incur either
* O(R? + R?log I) time per sample (ours: O(R?log 1))
* O(NIR?) space usage (ours: O(NIR))

» Connections to the Maximum Squared Inner Product Search problem.

Application to ALS CP Decomposition

CP Decomposition: Represents an N-dimensional tensor 7 as a weighted sum of
generalized outer products. lteratively solve least-squares problems of the form

min @ U, | - diag(o UjT —mat(T,5)"
Uj k#3j o
— >—< >—< 5 3 D
U m@) - . .' = : . mat(f,z.) o . u, diag(o)

min ®

2
Iv

mat(7, 2)

MTTKRP

Experiments

Runtime Benchmarks (LBNL Perlmutter CPU)

Time (s)

2] 0.6 1

,

7

T T T — T
10? 103 104 10° 100

T
107

1=222, R=32

0.4
14 /
0.2
o—=0
0+ T T T T T T T
16 32 64 128 2 4 6 8
R N
—&— Construction Sampling

Sparse Tensor Decomposition

Tensor Dimensions Nonzeros
Uber Pickups 183 x 24 x 1,140 x 1,717 3,309,490
Enron Emails 6,066 x 5,699 x 244,268 x 1,176 54,202,099
NELL-2 12,092 x 9,184 x 28,818 76,879,419
Amazon Reviews 4,821,207 x 1,774,269 x 1,805,187 1,741,809,018
Reddit-2015 8,211,298 x 176,962 x 8,116,559 4,687,474,081

* Ran sparse CP decomposition on tensors from the FROSTT collection.

» Compared STS-CP against random and hybrid versions of CP-ARLS-LEV.
* One of few randomized algorithms designed for sparse tensors.
« For an N-dimensional tensor, sample complexity is O(RY~1/(s5)) per solve.

Accuracy Comparison for Fixed Sample Count

Uber (~3.3e6 nz) Enron* (~5.4e7 nz) NELL-2* (~7.7e7 nz)
1254 € | —O— —— < L 2
100 4 ~@- g 1 —0— - 5 C L 2
754 * ° 1 >- —— s o e
50 ce E —e - —e— E e
251 -@ g —e— 1 ®
x T T T T T T T T T T
ég 0.20 0.22 0.24 0.05 0.10 0.15 0.05 0.06 0.07 0.08
ko
g Amazon (~1.8e9 nz) Reddit* (~4.7e9 nz)
=
125 4 — e o > ° ® CP-ARLS-LEV
CP-ARLS-LEV (hybrid)
100 4 - ° § © o @ STS-CP (ours)
754 2 4 o 5 RO
50 1 L O 1 >0
251 @® 1@
T T T T T T T T T T
0.34 0.36 0.38 0.40 0.06 0.07 0.08 0.09 0.10 0.11
Fit

ALS Accuracy Comparison for J = 2'6 samples.

Accuracy on Individual Least-Squares Problems

Uber Amazon
1072
10—2 4
w 1073 5

10—3 4

oA fearafestass

0 20 40 0 10 20 30

LSTSQ Problem Number LSTSQ Problem Number

CP-ARLS-LEV hybrid —e— STS-CP (ours)

Fit vs. ALS Update Time

0.100
0095 4+ F o e T
= —— STS-CP (ours), J=65,536
™ 0.090 - CP-ARLS-LEYV, J=196,608
CP-ARLS-LEYV, J=163,840
0.085 —— CP-ARLS-LEYV, J=131,072
' CP-ARLS-LEYV, J=98,304
4 —— CP-ARLS-LEYV, J=65,536
0.080 T

0 1000 2000 3000 4000 5000 6000 7000
Cumulative ALS Update Time (5s)

Fit vs. ALS Update Time, Reddit Tensor, R = 100.

» Can the quadratic-in-R sampling cost be reduced?
» Can we apply to other tensor formats (e.g. MPS / tensor train)?

» Work in progress: distributed-memory sampling.

Thank You! Read the preprint, and try out the code.

https://arxiv.org/abs/2301.12584

https://github.com/vbharadwaj-bk/fast_tensor_leverage

https://arxiv.org/abs/2301.12584
https://github.com/vbharadwaj-bk/fast_tensor_leverage

Backup Slides

Comparison to Countsketch

Countsketch Matrix: Sampling Matrix:

0 0 -1 10 00010

1 0 0 00 01 000

0 0 0 01 00100

0 -1 0 00 01 000
One nonzero per column. Every row in One nonzero per row. Every row in my
my input is added / subtracted to output is a copy-pasted row from my
exactly one row of my output. input.

Page 19, “Sketching as a Tool for Numerical Linear Algebra”, Woodruff.

Approaches to KRP Leverage
Score Sampling

Approach 1: Exhaustive Precomputation

* Only a finite number of values for 5,. Precompute and store all possible
conditional distributions for s,, and similarly for s, 5,...

* Preprocessing time is Q2 (IV), not viable for large 1.

Preprocessing Time ‘ Time for J Samples ‘ # Samples Required
Q(IN) | O(JN) | O(R/(26))

Approach 2: Ignore the Dependence

+ Sample independently from U, ..., U, based on the leverage scores of each
factor matrix. Approach used by Cheng et al., Larsen and Kolda.

* No longer sampling from the exact leverage score distribution, so require
O(RY /(6)) samples to achieve the (¢,) guarantee.

« Efficient if R, N low enough. Can easily update if one matrix U; changes.

Preprocessing Time ‘ Time for J Samples \ # Samples Required
O(NIR?) | O(JN) | O(RN/(e9))

Approach 3: Compute Full Conditional Distribution for each Sample

+ Compute the full conditional distribution p(s, = s, | §; = s,) for each draw
during sampling. Approach used by Malik et al. (TNS-CP).

« Costs O(IR?) per matrix U, per sample.

» Works well if I is low enough (many dense tensor applications), but
performance degrades for I > 103.

Preprocessing Time ‘ Time for J Samples \ # Samples Required
O(NIR?) | O(JNR?I) | O(R/(£6))

Approach 4: Segment Tree Sampling (Ours)

* View the conditional distribution as a mixture of several components.

* After preprocessing, sample a component of the mixture via binary search
without computing all values from the conditional distribution.

» For R ~ 102, we achieve a sampling time that is practical for sparse tensor
decomposition with mode sizes in the tens of millions.

Preprocessing Time ‘ Time for J Samples ‘ # Samples Required
O(NIR?) | O(NR® + JNR?log) | O(R/(e6))

Main Theorem

Theorem

Given matrices U, ...,Uy, U; € R"*F Vj, there exists a data structure with the
following properties:

1. Its construction time is O (N1R?), and its storage cost is O (NIR). If matrix
U, changes, it can be updated in time O(IR?)

2. Using O(R?) scratch space, it can draw J samples from the KRP
U, ©...© Uy according the leverage score distribution on its rows in time

O(NR?*+ JNR?logl).

It can also draw samples from the KRP of all matrices excluding one.

Complete Proof of Main Result

Part 1: Segment Tree Sampling

* Given probability distribution ¢4, ..., ¢;, how do you sample from it efficiently?

» Simple Algorithm: Binary-Search Inversion Sampling
.. i—1 %
1. Divide [0, 1] into I bins. Bin i has endpoints [ZFO aj, Zj:O qj>.
2. For each sample, draw a real number D uniformly from [0, 1]. Binary search on
the list of endpoints to find the containing bin, return its index.

* Preprocessing cost: O(I) (prefix sum). Per-sample cost: O(log I) (binary
search).

Part 1: Segment Tree Sampling

Modify the previous procedure as follows:

 Binary search until remaining interval has
at most F' bins, iterate through what

remains to find bin containing D. @
- View as a traversal of a segment tree T . @ @
from root to a leaf. Each node equipped
with segment S(v) C [1..1]. | qz | q4 | qo | qg |

» Key: Atinternal nodes, don’t need
individual probabilities ¢, - only their sum.

Part 1: Segment Tree Sampling

Define functions 7 : T, » — R, and

q: T, r — RY. Use these functions Algorithm 1 STSample(T; . (), ("))
to branch at internal nodes and 1: ¢ == root(T; z),low = 0.0, high = 1.0
3: while ¢ ¢ leaves(T} 1) do
PrOpOSition 4: cutoff := low + m(L(c))
» 5 if cutoff > D then
lfm(v) = ZiES(U) q; and 6 ¢ := L(c), high := cutoff
q(v) ={q; | i € S(v)} at each leaf, 7o else
) . 8: ¢ := R(c),low := cutoff v
STsample returns index i with 9: return Sy(v) + argmin,_ (low + Z;—[qle)lj] < D)

probability q;.

Part 1: Segment Tree Sampling

* If m runs in time 7, per call and ¢ runs in time 7, (F') per call, the complexity of
STSample is
O(7y log[I/F] + 75(F))
« If we have efficient functions to compute m and ¢, we can avoid a linear factor
I when drawing each sample.

Part 2: A Simpler Row Sampling Problem

+ Suppose we wish to sample .J rows from a matrix A € R’*%. Let 5 be the RV
for a sample index, h € R, Y € RE* be a vector and a p.s.d. matrix.
* Impose

T

p(g =35 ‘ h> U>Y) = qh,U,Y [S] = C_1<hhT7 U [Sv :] U [87 :] 7Y>

Here, (-, -,-) means "multiply three matrices elementwise, take sum of all
entries in product” (generalized inner product).

* The twist: Y is the same for all row samples, but & is potentially unique for
each one.

Part 2: A Simpler Row Sampling Problem

* Solution: initialize a segment tree T; .. For any segment S(v) associated with
a node v, sum both sides:

S pE=s|hUY)= > CH U] Uls,d,Y)
seS(v) s€S(v)
=CYaRT, Y Uls,d] Uls,,Y)
seS(v)
- Cfl<hhT’Gu’Y>

* If GV is precomputed for each node v € T , last line of equation above
computable in O(R?) time. Produces efficient function /m for STSample.

Part 2: A Simpler Row Sampling Problem

Lemma (Efficient Row Sampler)
There is a data structure parameterized by integer F’ that, given a matrix A and a
p.s.d. matrix Y, satisfies the following:

* Has construction time O(I R?) and space complexity O(R?[I/F1).

* After construction, produces sample from g, ;; y in time
O(R?log[I/F| + FR?) for any vector h.

« IfY is a matrix of all ones, the time per sample drops to O(R*log[I/F] + FR).

Main Proof Idea: Precompute matrices GV in construction phase, call STSample
during the sampling phase.

Part 3: Assembling the Khatri-Rao Product Sampler

@ [01 05 -09 o.z]} 1[00 0102 ..osjj ﬂ[[08 0303 .0,9} @ (08 -0.1 05 .07}

U U U U

1 2 3 4

cLletA=U,0..0Uy. LetG, =U/U, G=®, G,
» Suppose we have sampled 5, = s4,...,5,_; = s;_,. Define

Part 3: Assembling the Khatri-Rao Product Sampler

* What is the distribution of s, conditioned on prior draws?

Theorem (Heavily Adapted Version of Malik 2022)

P(8 =8, |81 =81..8;1 = 55_1) = Ah_, U, ,Gop (5]

» Matches our lemma! Use the data structure that we developed earlier.

Part 3: Assembling the Khatri-Rao Product Sampler

P(S = 8p | 81 = 81851 = Sp_1) = 4h_,,U, .G}, (5]

* If lemma applied directly to conditional distribution p(s, = s, | 5., = s.;), you
either incur
« O(IR?) space complexity for F =1
« O(NR3logI) time per sample for F = R
+ To fix: observe that G-, is p.s.d., identical for all samples. Take its

eigendecomposition
G>k — ‘//&‘/T

Part 3: Assembling the Khatri-Rao Product Sampler

+ Define matrix W € R"*% elementwise by

W [t,u] o= (hophl U [t UtV] V])

<k’
 After some manipulation, we can write

R
W, ul
hoy U, oy = 2 € MU s
s = 2 M
where e[u] = X, |W [, u],|. Since A, > 0, this is a mixture distribution.
Sample in two steps:
» Choose a component u according to weight vector e
+ Sample an index in I;, according to W [, u].

Part 3: Assembling the Khatri-Rao Product Sampler

* Let € be a normalized version of e. Manipulation yields

€= h_, VAVT G,

Use our lemma with F' = 1 to efficiently select a component.

« Suppose we select component & = u. Then the row index ¢ drawn according
to distribution W [:, u| is distributed as

plt=t|a=u)= Qh_poViul,U,,0) [t -

Use our lemma again with F' = R to draw a row index.

Part 3: Assembling the Khatri-Rao Product Sampler

* First sampling phase reduces the gram matrix G, to an outer product from
one of its eigenvectors. Reduces runtime for procedure ¢ in the second

sampling phase

» Second sampling phase can choose F' = R to control space complexity.

Application to ALS CP Decomposition

Corollary (STS-CP)
Suppose T is dense, and suppose we solve each least-squares problem in ALS
with a randomized method. Leverage score sampling using our data structure
achieves the (e, §) guarantee with O(R/(¢6)) samples. The overall complexity is
#it- N
o(*5

€

(NR3logI + IR2)>

For sparse tensors, STS-CP preserves tensor sparsity in the downsampled
least-squares problem.

Additional Results

Reference Implementation

Python Reference Implementation

1 e
2 samples = []
Algorithm 2 Snippet of KRPSample Pseudocode 3 for _ in range(J):
1. 4 h = np.ones(self.R)
2: ford =1..J do 5 sample = []
3 h=[L..1" 6 for k in range(self.N):
4. fork + jdo 7 if k == j:
5:), == RowSample(E},, h) 8 continue
(3 Z; := RowSample(Z,,h ® (V}, [:, 1)) 9 u_k = E_samplers[k].RowSample(h)
7 h = Uy, [f,7] 10 h_scl = h * Lambda_VT[k][u_k]
8 sy = (i) 11 t_k = self.Z samplers[k].RowSample(h_scl)
9: return 5,/:, 12 h += self.ULk][t_k, :]
- 13 sample.append(t_k)
14 samples.append(sample)
15 return samples

Verifying Our Sampler’s Output

—— True Leverage Score Distribution

0.025 -
Histogram of Draws from Our Sampler
0.020
z 0.015 A
12}
=]
5) |
Q]
0.010 1
| [}
) e 1 \ 1
0.005 1 fiH- il [
| 4 IR [[l |
11 i M | 1 i
U L Rl 1Y AL 1 ‘ LAY
wdd " b, . 4 L% N ! "
0.000 - s - *
0 100 200 300 400 500

Row Index from KRP

Distribution Comparison for U, © U, © U, U; € R®*® initialized i.i.d. Gaussian.

Fit vs. ALS Update Time

0.0800
0.390 0.0775
0.0750
0.385
0.0725
£ 0.380 £ 0.0700
—— STS-CP (ours), J=65,536
0.375 CP-ARLS-LEV, J=196,608 0.0675
CP-ARLS-LEV, J=163,840
* —— CP-ARLS-LEV,]=131,072 0.0650
0.370 CP-ARLS-LEV, J=98,304 0.0625
—— CP-ARLS-LEV, =65,536 ’ { —— CP-ARLS-LEV, J=65,536
0.365 : 0.0600 /
0 200 400 600 800 0 20 40 60 80 100 120

Cumulative ALS Update Time (s) Cumulative ALS Update Time (s)

(a) Amazon (b) NELL-2

Fit vs. ALS Update Time, R = 100.

» Theoretically superior sample complexity of STS-CP verified through
experiments.

» Higher accuracy per least-squares solve for STS-CP translates to better final
tensor fit.

* The runtime overhead of STS-CP is justified on sparse tensors with billions of
nonzeros.

* On smaller tensors, STS-CP may benefit from dynamically adapting the
sample count J.

	Introduction
	Prior Work and Main Result
	Outline of Sampling Procedure
	Experiments
	Appendix
	Backup Slides
	Approaches to KRP Leverage Score Sampling
	Complete Proof of Main Result
	Additional Results

