Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition

Vivek Bharadwaj ${ }^{1}$, Osman Asif Malik ${ }^{2}$, Riley Murray ${ }^{3,2,1}$, Laura Grigori ${ }^{4}$, Aydın Buluç ${ }^{2,1}$, James Demmel ${ }^{1}$

[^0]

Introduction

The Khatri-Rao Product

- The Khatri-Rao product (KRP, denoted \odot) is the column-wise Kronecker product of two matrices:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \odot\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right]=\left[\begin{array}{ll}
a w & b x \\
c w & d x \\
a y & b z \\
c y & d z
\end{array}\right]
$$

- Our goal: efficiently solve an overdetermined linear least-squares problem

$$
\min _{X}\|A X-B\|_{F}
$$

where $A=U_{1} \odot \ldots \odot U_{N}$ with $U_{j} \in \mathbb{R}^{\left|I_{j}\right| \times R}$.

Motivation

This least-squares problem is the computational bottleneck in alternating least-squares Candecomp / PARAFAC (CP) decomposition.

Focus on large sparse tensors (mode sizes in the millions) and moderate decomposition rank $R \approx 10^{2}$. Assume $\left|I_{j}\right|=I$ for all j and $I \geq R$.

Randomized Least-Squares

- Well-studied approach: apply sketching operator S to both A and B, solve reduced problem

$$
\min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

- Want an (ε, δ) guarantee on solution quality: with high probability $(1-\delta)$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|
$$

- Restrict S to be a sampling matrix: selects and reweights rows from A and B. How do we downsample a Khatri-Rao product accurately and efficently?

Our Contributions

- We design a sampling data structure for the Khatri-Rao product requiring
- Persistent space overhead at most the size of the input
- Runtime logarithmic in the height of the Khatri-Rao product and quadratic in R to draw a single sample from the KRP, after moderate one-time costs
- Only $O(R /(\varepsilon \delta))$ samples to achieve the (ε, δ) guarantee (ignoring $\log R$ factors)
- Yields the STS-CP algorithm: achieves lower asymptotic runtime for randomized CP decomposition than recent SOTA methods
- STS-CP achieves higher accuracy and faster progress to solution on sparse tensors with billions of nonzeros

Complexity Comparison

Method	Complexity per ALS Round
CP-ALS	$N(N+I) I^{N-1} R$
CP-ARLS-LEV	$N(R+I) R^{N} /(\varepsilon \delta)$
TNS-CP	$N^{3} I R^{3} /(\varepsilon \delta)$
Gaussian Tensor Network Embedding	$N^{2}\left(N^{1.5} R^{3.5} / \varepsilon^{3}+I R^{2}\right) / \varepsilon^{2}$
STS-CP (ours)	$N\left(N R^{3} \log I+I R^{2}\right) /(\varepsilon \delta)$

Factors involving $\log R$ and $\log (1 / \delta)$ omitted.

Prior Work and Main Result

Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its rows. Leverage score ℓ_{i} of row i is

$$
\ell_{i}=A[i,:]\left(A^{\top} A\right)^{+} A[i,:]^{\top}
$$

Theorem (Leverage Score Sampling Guarantees)

Suppose $S \in \mathbb{R}^{J \times I}$ is a leverage-score sampling matrix for $A \in \mathbb{R}^{I \times R}$, and define

$$
\tilde{X}:=\arg \min _{\tilde{X}}\|S A \tilde{X}-S B\|_{F}
$$

If $J \gtrsim R \max (\log (R / \delta), 1 /(\varepsilon \delta))$, then with probability at least $1-\delta$,

$$
\|A \tilde{X}-B\|_{F} \leq(1+\varepsilon) \min _{X}\|A X-B\|_{F}
$$

Leverage Score Sampling

- For $I=10^{7}, N=3$, matrix A has 10^{21} rows. Far too expensive to compute all leverage scores - can't even index rows with 64-bit integers.
- Instead: draw a row from each of U_{1}, \ldots, U_{N}, return their Hadamard product.

- Let \hat{s}_{j} be a random variable for the row index drawn from U_{j}. Assume $\left(\hat{s}_{1}, \ldots, \hat{s}_{N}\right)$ jointly follows the leverage score distribution on $U_{1} \odot \ldots \odot U_{N}$.

A Problem of Dependence

- Problem: Variables are not independent! In general,

$$
p\left(\hat{s}_{2}=s_{2}\right) \neq p\left(\hat{s}_{2}=s_{2} \mid \hat{s}_{1}=s_{1}\right)
$$

- How do we deal with the dependence? Several approaches.

Algorithm	Preprocessing	Sampling Time	J Required
Precompute all	$\Omega\left(I^{N}\right)$	$O(J N)$	$O(R /(\varepsilon \delta))$
Malik et al.	$O\left(N I R^{2}\right)$	$O\left(J N R^{2} I\right)$	$O(R /(\varepsilon \delta))$
Larsen \& Kolda	$O\left(N I R^{2}\right)$	$O(J N)$	$O\left(R^{N} /(\varepsilon \delta)\right)$
Our Algorithm	$O\left(N I R^{2}\right)$	$O\left(N R^{3}+J N R^{2} \log I\right)$	$O(R /(\varepsilon \delta))$

Outline of Sampling Procedure

The Conditional Distribution of \hat{s}_{k}

Theorem

$$
p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{<k}=s_{<k}\right) \propto\left\langle h_{<k} h_{<k}^{\top}, U_{k}\left[s_{k},:\right]^{\top} U_{k}\left[s_{k},:\right], G_{>k}\right\rangle
$$

Stage 1: Sample Eigenvector of $G_{>k}$

Compute symmetric eigendecomposition $G_{>k}=V \Lambda V^{T}$, break the conditional distribution into components:

$$
\left.\begin{array}{rl}
1= & \sum_{s_{k}=1}^{I} p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{<k}=s_{<k}\right) \\
\left.=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G_{k}, G_{>k}\right\rangle=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G_{k}, \lambda_{1} \rrbracket+\ldots+\lambda_{R}\right\rceil\right\rangle \\
& \quad \text { Sample component } \\
& \text { in time } O\left(R^{2} \log R\right)
\end{array}\right]
$$

Stage 2: Sample Row Index Based on Eigenvector

Break remaining sample space further into components:

$$
\begin{aligned}
& C^{-1}\left\langle h_{<k} h_{<k}^{\top}, G_{k}, \lambda_{u} V[:, u] V[:, u]^{\top}\right\rangle \\
& \quad=C^{-1}\left\langle h_{<k} h_{<k}^{\top}, \square+\ldots+\square, \lambda_{u} \square\right\rangle \\
& \quad \text { Sample row index } \\
& \quad \text { in time } O\left(R^{2} \log (I / R)\right)
\end{aligned}
$$

Sampling Time: $O\left(R^{2} \log (I / R)+R^{2} \log R\right)=O\left(R^{2} \log I\right)$

Analysis of Sampler Design

- First stage selects a one-dimensional subspace of $G_{>k}$.
- Second stage samples according to the squared-norms in a 1-dimensional inner product space, reducing time / space complexity.
- Without two-stage sampling design, would incur either
- $O\left(R^{3}+R^{2} \log I\right)$ time per sample (ours: $O\left(R^{2} \log I\right)$)
- $O\left(N I R^{2}\right)$ space usage (ours: $O(N I R)$)
- Connections to the Maximum Squared Inner Product Search problem.

Application to ALS CP Decomposition

CP Decomposition: Represents an N-dimensional tensor \mathcal{T} as a weighted sum of generalized outer products. Iteratively solve least-squares problems of the form

$$
\min _{\hat{U}_{j}}\left\|\left[\bigodot_{k \neq j} U_{k}\right] \cdot \operatorname{diag}(\sigma) \cdot \hat{U}_{j}^{\top}-\operatorname{mat}(\mathcal{T}, j)^{\top}\right\|_{F}
$$

Experiments

Runtime Benchmarks (LBNL Perlmutter CPU)

Sparse Tensor Decomposition

Tensor	Dimensions	Nonzeros
Uber Pickups	$183 \times 24 \times 1,140 \times 1,717$	$3,309,490$
Enron Emails	$6,066 \times 5,699 \times 244,268 \times 1,176$	$54,202,099$
NELL-2	$12,092 \times 9,184 \times 28,818$	$76,879,419$
Amazon Reviews	$4,821,207 \times 1,774,269 \times 1,805,187$	$1,741,809,018$
Reddit-2015	$8,211,298 \times 176,962 \times 8,116,559$	$4,687,474,081$

- Ran sparse CP decomposition on tensors from the FROSTT collection.
- Compared STS-CP against random and hybrid versions of CP-ARLS-LEV.
- One of few randomized algorithms designed for sparse tensors.
- For an N-dimensional tensor, sample complexity is $O\left(R^{N-1} /(\varepsilon \delta)\right)$ per solve.

Accuracy Comparison for Fixed Sample Count

ALS Accuracy Comparison for $J=2^{16}$ samples.

Accuracy on Individual Least-Squares Problems

Fit vs. ALS Update Time

Fit vs. ALS Update Time, Reddit Tensor, $R=100$.

Future Work

- Can the quadratic-in- R sampling cost be reduced?
- Can we apply to other tensor formats (e.g. MPS / tensor train)?
- Work in progress: distributed-memory sampling.

Thank You! Read the preprint, and try out the code.

https://arxiv.org/abs/2301.12584
https://github.com/vbharadwaj-bk/fast_tensor_leverage

Backup Slides

Comparison to Countsketch

Countsketch Matrix:

$$
\left[\begin{array}{ccccc}
0 & 0 & -1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 & 0
\end{array}\right]
$$

One nonzero per column. Every row in my input is added / subtracted to exactly one row of my output.

Page 19, "Sketching as a Tool for Numerical Linear Algebra", Woodruff.

Sampling Matrix:

$\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right]$

One nonzero per row. Every row in my output is a copy-pasted row from my input.

Approaches to KRP Leverage Score Sampling

Approach 1: Exhaustive Precomputation

- Only a finite number of values for \hat{s}_{1}. Precompute and store all possible conditional distributions for \hat{s}_{2}, and similarly for $\hat{s}_{3}, \hat{s}_{4} \ldots$
- Preprocessing time is $\Omega\left(I^{N}\right)$, not viable for large I.

Preprocessing Time	Time for J Samples	\# Samples Required
$\Omega\left(I^{N}\right)$	$O(J N)$	$O(R /(\varepsilon \delta))$

Approach 2: Ignore the Dependence

- Sample independently from U_{1}, \ldots, U_{N} based on the leverage scores of each factor matrix. Approach used by Cheng et al., Larsen and Kolda.
- No longer sampling from the exact leverage score distribution, so require $O\left(R^{N} /(\varepsilon \delta)\right)$ samples to achieve the (ε, δ) guarantee.
- Efficient if R, N low enough. Can easily update if one matrix U_{j} changes.

Preprocessing Time	Time for J Samples	\# Samples Required
$O\left(N I R^{2}\right)$	$O(J N)$	$O\left(R^{N} /(\varepsilon \delta)\right)$

Approach 3: Compute Full Conditional Distribution for each Sample

- Compute the full conditional distribution $p\left(\hat{s}_{2}=s_{2} \mid \hat{s}_{1}=s_{1}\right)$ for each draw during sampling. Approach used by Malik et al. (TNS-CP).
- Costs $O\left(I R^{2}\right)$ per matrix U_{j} per sample.
- Works well if I is low enough (many dense tensor applications), but performance degrades for $I \geq 10^{3}$.

Preprocessing Time	Time for J Samples	\# Samples Required
$O\left(N I R^{2}\right)$	$O\left(J N R^{2} I\right)$	$O(R /(\varepsilon \delta))$

Approach 4: Segment Tree Sampling (Ours)

- View the conditional distribution as a mixture of several components.
- After preprocessing, sample a component of the mixture via binary search without computing all values from the conditional distribution.
- For $R \approx 10^{2}$, we achieve a sampling time that is practical for sparse tensor decomposition with mode sizes in the tens of millions.

Preprocessing Time	Time for J Samples	\# Samples Required
$O\left(N I R^{2}\right)$	$O\left(N R^{3}+J N R^{2} \log I\right)$	$O(R /(\varepsilon \delta))$

Main Theorem

Theorem

Given matrices $U_{1}, \ldots, U_{N}, U_{j} \in \mathbb{R}^{I \times R} \forall j$, there exists a data structure with the following properties:

1. Its construction time is $O\left(N I R^{2}\right)$, and its storage cost is $O(N I R)$. If matrix U_{j} changes, it can be updated in time $O\left(I R^{2}\right)$
2. Using $O\left(R^{3}\right)$ scratch space, it can draw J samples from the KRP
$U_{1} \odot \ldots \odot U_{N}$ according the leverage score distribution on its rows in time

$$
O\left(N R^{3}+J N R^{2} \log I\right)
$$

It can also draw samples from the KRP of all matrices excluding one.

Complete Proof of Main Result

Part 1: Segment Tree Sampling

- Given probability distribution q_{1}, \ldots, q_{I}, how do you sample from it efficiently?
- Simple Algorithm: Binary-Search Inversion Sampling

1. Divide $[0,1]$ into I bins. Bin i has endpoints $\left[\sum_{j=0}^{i-1} q_{j}, \sum_{j=0}^{i} q_{j}\right)$.
2. For each sample, draw a real number D uniformly from [0,1$]$. Binary search on the list of endpoints to find the containing bin, return its index.

- Preprocessing cost: $O(I)$ (prefix sum). Per-sample cost: $O(\log I)$ (binary search).

Part 1: Segment Tree Sampling

Modify the previous procedure as follows:

- Binary search until remaining interval has at most F bins, iterate through what remains to find bin containing D.
- View as a traversal of a segment tree $T_{I, F}$ from root to a leaf. Each node equipped with segment $S(v) \subseteq[1 . . I]$.

- Key: At internal nodes, don't need individual probabilities q_{j} - only their sum.

Part 1: Segment Tree Sampling

Define functions $\tilde{m}: T_{n, F} \rightarrow \mathbb{R}_{+}$and $\tilde{q}: T_{n, F} \rightarrow \mathbb{R}_{+}^{F}$. Use these functions
to branch at internal nodes and search the leaf intervals $S(v)$.

Proposition

If $\tilde{m}(v)=\sum_{i \in S(v)} q_{i}$ and $\tilde{q}(v)=\left\{q_{i} \mid i \in S(v)\right\}$ at each leaf, STSample returns index i with probability q_{i}.

```
```

Algorithm 1 STSample $\left(T_{I, F}, \tilde{m}(\cdot), \tilde{q}(\cdot)\right)$

```
```

Algorithm 1 STSample $\left(T_{I, F}, \tilde{m}(\cdot), \tilde{q}(\cdot)\right)$
1: $c:=\operatorname{root}\left(T_{I, F}\right)$, low $=0.0$, high $=1.0$
1: $c:=\operatorname{root}\left(T_{I, F}\right)$, low $=0.0$, high $=1.0$
2: Sample $D \sim \operatorname{Uniform}(0.0,1.0)$
2: Sample $D \sim \operatorname{Uniform}(0.0,1.0)$
3: while $c \notin$ leaves $\left(T_{I, F}\right)$ do
3: while $c \notin$ leaves $\left(T_{I, F}\right)$ do
4: \quad cutoff $:=$ low $+\tilde{m}(L(c))$
4: \quad cutoff $:=$ low $+\tilde{m}(L(c))$
5: \quad if cutoff $\geq D$ then
5: \quad if cutoff $\geq D$ then
$c:=L(c)$, high := cutoff
$c:=L(c)$, high := cutoff
else
else
$c:=R(c)$, low := cutoff
$c:=R(c)$, low := cutoff
return $S_{0}(v)+\operatorname{argmin}_{i \geq 0}\left(\operatorname{low}+\sum_{j=1}^{i} \tilde{q}(c)[j]<D\right)$

```
```

 return \(S_{0}(v)+\operatorname{argmin}_{i \geq 0}\left(\operatorname{low}+\sum_{j=1}^{i} \tilde{q}(c)[j]<D\right)\)
    ```
```


Part 1: Segment Tree Sampling

- If \tilde{m} runs in time τ_{1} per call and \tilde{q} runs in time $\tau_{2}(F)$ per call, the complexity of STSample is

$$
O\left(\tau_{1} \log \lceil I / F\rceil+\tau_{2}(F)\right)
$$

- If we have efficient functions to compute \tilde{m} and \tilde{q}, we can avoid a linear factor I when drawing each sample.

Part 2: A Simpler Row Sampling Problem

- Suppose we wish to sample J rows from a matrix $A \in \mathbb{R}^{I \times R}$. Let \hat{s} be the RV for a sample index, $h \in \mathbb{R}^{R}, Y \in \mathbb{R}^{R \times R}$ be a vector and a p.s.d. matrix.
- Impose

$$
p(\hat{s}=s \mid h, U, Y):=q_{h, U, Y}[s]:=C^{-1}\left\langle h h^{\top}, U[s,:]^{\top} U[s,:], Y\right\rangle
$$

Here, $\langle\cdot, \cdot, \cdot\rangle$ means "multiply three matrices elementwise, take sum of all entries in product" (generalized inner product).

- The twist: Y is the same for all row samples, but h is potentially unique for each one.

Part 2: A Simpler Row Sampling Problem

- Solution: initialize a segment tree $T_{I, F}$. For any segment $S(v)$ associated with a node v, sum both sides:

$$
\begin{aligned}
\sum_{s \in S(v)} p(\hat{s}=s \mid h, U, Y) & =\sum_{s \in S(v)} C^{-1}\left\langle h h^{\top}, U[s,:]^{\top} U[s,:], Y\right\rangle \\
& =C^{-1}\left\langle h h^{\top}, \sum_{s \in S(v)} U[s,:]^{\top} U[s,:], Y\right\rangle \\
& :=C^{-1}\left\langle h h^{\top}, G^{v}, Y\right\rangle
\end{aligned}
$$

- If G^{v} is precomputed for each node $v \in T_{I, F}$, last line of equation above computable in $O\left(R^{2}\right)$ time. Produces efficient function \tilde{m} for STSample.

Part 2: A Simpler Row Sampling Problem

Lemma (Efficient Row Sampler)

There is a data structure parameterized by integer F that, given a matrix A and a p.s.d. matrix Y, satisfies the following:

- Has construction time $O\left(I R^{2}\right)$ and space complexity $O\left(R^{2}\lceil I / F\rceil\right)$.
- After construction, produces sample from $q_{h, U, Y}$ in time $O\left(R^{2} \log \lceil I / F\rceil+F R^{2}\right)$ for any vector h.
- If Y is a matrix of all ones, the time per sample drops to $O\left(R^{2} \log \lceil I / F\rceil+F R\right)$.

Main Proof Idea: Precompute matrices G^{v} in construction phase, call STSample during the sampling phase.

Part 3: Assembling the Khatri-Rao Product Sampler

- Let $A=U_{1} \odot \ldots \odot U_{N}$. Let $G_{k}=U_{k}^{\top} U_{k}, G=\circledast_{k=1}^{N} G_{k}$.
- Suppose we have sampled $\hat{s}_{1}=s_{1}, \ldots, \hat{s}_{k-1}=s_{k-1}$. Define

$$
\begin{gathered}
h_{<k}=\overbrace{i=1}^{k-1} U_{i}\left[s_{i},:\right] \\
G_{>k}=G^{+} \circledast \underbrace{*}_{i=k+1} G_{i}
\end{gathered}
$$

Part 3: Assembling the Khatri-Rao Product Sampler

-What is the distribution of \hat{s}_{k} conditioned on prior draws?
Theorem (Heavily Adapted Version of Malik 2022)

$$
p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{1}=s_{1} \ldots \hat{s}_{k-1}=s_{k-1}\right)=q_{h_{<k}, U_{k}, G_{>k}}\left[s_{k}\right]
$$

- Matches our lemma! Use the data structure that we developed earlier.

Part 3: Assembling the Khatri-Rao Product Sampler

$$
p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{1}=s_{1} \ldots \hat{s}_{k-1}=s_{k-1}\right)=q_{h_{<k}, U_{k}, G_{>k}}\left[s_{k}\right]
$$

- If lemma applied directly to conditional distribution $p\left(\hat{s}_{k}=s_{k} \mid \hat{s}_{<k}=s_{<k}\right)$, you either incur
- $O\left(I R^{2}\right)$ space complexity for $F=1$
- $O\left(N R^{3} \log I\right)$ time per sample for $F=R$
- To fix: observe that $G_{>k}$ is p.s.d., identical for all samples. Take its eigendecomposition

$$
G_{>k}=V \Lambda V^{\top}
$$

Part 3: Assembling the Khatri-Rao Product Sampler

- Define matrix $W \in \mathbb{R}^{I \times R}$ elementwise by

$$
W[t, u]:=\left\langle h_{<k} h_{<k}^{\top}, U_{k}[t,:]^{\top} U_{k}[t,:], V[:, u] V[:, u]^{\top}\right\rangle
$$

- After some manipulation, we can write

$$
q_{h_{<k}, U_{k}, G_{>k}}=\sum_{u=1}^{R} e[u] \frac{W[:, u]}{\|W[:, u]\|_{1}},
$$

where $e[u]=\lambda_{u}\left\|W[:, u]_{1}\right\|$. Since $\lambda_{u} \geq 0$, this is a mixture distribution. Sample in two steps:

- Choose a component u according to weight vector e
- Sample an index in I_{k} according to $W[:, u]$.

Part 3: Assembling the Khatri-Rao Product Sampler

- Let \bar{e} be a normalized version of e. Manipulation yields

$$
\bar{e}=q_{h_{<k}, \sqrt{\Lambda}} V^{\top}, G_{k}
$$

Use our lemma with $F=1$ to efficiently select a component.

- Suppose we select component $\hat{u}=u$. Then the row index \hat{t} drawn according to distribution $\overline{W[:, u]}$ is distributed as

$$
p(\hat{t}=t \mid \hat{u}=u)=q_{h_{<k} \circledast V[;, u], U_{k},[1]}[t] .
$$

Use our lemma again with $F=R$ to draw a row index.

Part 3: Assembling the Khatri-Rao Product Sampler

- First sampling phase reduces the gram matrix $G_{>k}$ to an outer product from one of its eigenvectors. Reduces runtime for procedure \tilde{q} in the second sampling phase
- Second sampling phase can choose $F=R$ to control space complexity.

Application to ALS CP Decomposition

Corollary (STS-CP)

Suppose \mathcal{T} is dense, and suppose we solve each least-squares problem in ALS with a randomized method. Leverage score sampling using our data structure achieves the (ε, δ) guarantee with $O(R /(\varepsilon \delta))$ samples. The overall complexity is

$$
O\left(\frac{\# i t \cdot N}{\varepsilon \delta}\left(N R^{3} \log I+I R^{2}\right)\right)
$$

For sparse tensors, STS-CP preserves tensor sparsity in the downsampled least-squares problem.

Additional Results

Reference Implementation

Python Reference Implementation

```
Algorithm 2 Snippet of KRPSample Pseudocode
    for \(d=1 . . J\) do
        \(h=[1, \ldots, 1]^{\top}\)
        for \(k \neq j\) do
            \(\hat{u}_{k}:=\operatorname{RowSample}\left(E_{k}, h\right)\)
            \(\hat{t}_{k}:=\operatorname{RowSample}\left(Z_{k}, h \circledast\left(V_{k}\left[:, \hat{u}_{k}\right]\right)\right)\)
            \(h *=U_{k}\left[\hat{t}_{k},:\right]\)
        \(s_{d}=\left(\hat{t}_{k}\right)_{k \neq j}\)
    return \(s_{1}, \ldots, s_{J}\)
```

```
samples = []
for _ in range(J):
    h = np.ones(self.R)
    sample = []
    for k in range(self.N):
        if k == j:
            continue
        u_k = E_samplers[k].RowSample(h)
        h_scl = h * Lambda_VT[k][u_k]
        t_k = self.Z_samplers[k].RowSample(h_scl)
        h *= self.U[k][t_k, :]
        sample.append(t_k)
    samples.append(sample)
return samples
```


Verifying Our Sampler's Output

Distribution Comparison for $U_{1} \odot U_{2} \odot U_{3}, U_{j} \in \mathbb{R}^{8 \times 8}$ initialized i.i.d. Gaussian.

Fit vs. ALS Update Time

Fit vs. ALS Update Time, $R=100$.

Discussion

- Theoretically superior sample complexity of STS-CP verified through experiments.
- Higher accuracy per least-squares solve for STS-CP translates to better final tensor fit.
- The runtime overhead of STS-CP is justified on sparse tensors with billions of nonzeros.
- On smaller tensors, STS-CP may benefit from dynamically adapting the sample count J.

[^0]: ${ }^{1}$ Electrical Engineering and Computer Science Department, UC Berkeley
 ${ }^{2}$ Computational Research Division, Lawrence Berkeley National Lab
 ${ }^{3}$ International Computer Science Institute
 ${ }^{4}$ Sorbonne Université, Inria, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions

