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Introduction



The Khatri-Rao Product

» The Khatri-Rao product (KRP, denoted ©) is the column-wise Kronecker
product of two matrices:

» Our goal: efficiently solve an overdetermined linear least-squares problem

m)%n IAX — B,

where A = U, ... © Uy with U, € RILI*E,



This least-squares problem is the computational bottleneck in alternating
least-squares Candecomp / PARAFAC (CP) decomposition.
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Focus on large sparse tensors (mode sizes in the millions) and moderate
decomposition rank R ~ 10?. Assume |I,| = I for all jand I > R.




Randomized Least-Squares

» Well-studied approach: apply sketching operator S to both A and B, solve
reduced problem

Hlln)“(

* Want an (g, §) guarantee on solution quality: with high probability (1 — §),
|AX — BH (1+¢€)min|AX — B

» Restrict S to be a sampling matrix: selects and reweights rows from A and B.
How do we downsample a Khatri-Rao product accurately and efficently?



Our Contributions

» We design a sampling data structure for the Khatri-Rao product requiring
 Persistent space overhead at most the size of the input

* Runtime logarithmic in the height of the Khatri-Rao product and quadratic in R
to draw a single sample from the KRP, after moderate one-time costs

* Only O(R/(¢d)) samples to achieve the (e, §) guarantee (ignoring log R factors)

* Yields the STS-CP algorithm: achieves lower asymptotic runtime for
randomized CP decomposition than recent SOTA methods

» STS-CP achieves higher accuracy and faster progress to solution on sparse
tensors with billions of nonzeros



Complexity Comparison

Method Complexity per ALS Round
CP-ALS NN+ DIV 'R
CP-ARLS-LEV N(R + I)RN /(&)

TNS-CP N3IR3(£0)

Gaussian Tensor Network Embedding  N?(N'°R3% /&3 + IR?) /<2
STS-CP (ours) N(NR3logI + IR?)/(&f)

Factors involving log R and log(1/§) omitted.



Prior Work and Main Result



Leverage Score Sampling

We will sample rows i.i.d. from A according to the leverage score distribution on its
rows. Leverage score ¢; of row i is

6= Ali, ] (ATA) AL

Theorem (Leverage Score Sampling Guarantees)
Suppose S € R7*! js a leverage-score sampling matrix for A € R'*E, and define

~

X = argm}%nHSA)? = SBHF

If J = Rmax(log(R/d),1/(gd)), then with probability at least 1 — §,

|ax — BH (1+¢€)min[AX — B,



Leverage Score Sampling

« For I =107, N = 3, matrix A has 10?! rows. Far too expensive to compute all
leverage scores - can’t even index rows with 64-bit integers.

* Instead: draw a row from each of Uy, ..., Uy, return their Hadamard product.

[0.1 05 -09 ..03] [0.0 0.1 0.2 ..0.9] [-08 0303 .. -O.ﬂ q{ [-0.8 -0.1 05 .. 0.3
u, u,

u V)

1 2

e Let .§j be a random variable for the row index drawn from U;. Assume
(51, ..., 5y) jointly follows the leverage score distribution on U, © ... © Uy.



A Problem of Dependence

* Problem: Variables are not independent! In general,

P(8y = 85) F (55 = 55| 51 = 51)

* How do we deal with the dependence? Several approaches.

Algorithm Preprocessing Sampling Time J Required
Precompute all Q) O(JN) O(R/(g9))
Malik et al. O(NIR?) O(JNRI) O(R/(e0))
Larsen & Kolda O(NIR?) O(JN) O(RY /(£6))
Our Algorithm O(NIR?) O(NR3+ JNR?logI) | O(R/(g6))




Outline of Sampling Procedure




The Conditional Distribution of s,
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Stage 1: Sample Eigenvector of G_,

Compute symmetric eigendecomposition G, = VAV'", break the conditional
distribution into components:

Wl Gy Gy = C*1< IANNENDY e +)\RH:'>

Sample component
in time O(R?log R)



Stage 2: Sample Row Index Based on Eigenvector

Break remaining sample space further into components:

Cil <h<kh—r Gk’ )‘uV [:a u] Vv [:a U]T>

<k

_ C*1<h<khzk, |_+ ot I_, Auﬂ':'>

Sample row index
in time O(R?log(I/R))

Sampling Time: O (R%log(I/R) + R*log R) = O(R?logI)

11



Analysis of Sampler Design

* First stage selects a one-dimensional subspace of G,

» Second stage samples according to the squared-norms in a 1-dimensional
inner product space, reducing time / space complexity.

Without two-stage sampling design, would incur either
* O(R? + R?log I) time per sample (ours: O(R?log 1))
* O(NIR?) space usage (ours: O(NIR))

» Connections to the Maximum Squared Inner Product Search problem.



Application to ALS CP Decomposition

CP Decomposition: Represents an N-dimensional tensor 7 as a weighted sum of
generalized outer products. lteratively solve least-squares problems of the form

min @ U, | - diag(o UjT —mat(T,5)"
Uj k#3j o
— >—< >—< 5 3 D
U m@) - . .' = : . mat(f,z.) o . u, diag(o)

min ®

2
Iv

mat(7, 2)

MTTKRP



Experiments




Runtime Benchmarks (LBNL Perlmutter CPU)
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Sparse Tensor Decomposition

Tensor Dimensions Nonzeros
Uber Pickups 183 x 24 x 1,140 x 1,717 3,309,490
Enron Emails 6,066 x 5,699 x 244,268 x 1,176 54,202,099
NELL-2 12,092 x 9,184 x 28,818 76,879,419
Amazon Reviews 4,821,207 x 1,774,269 x 1,805,187 1,741,809,018
Reddit-2015 8,211,298 x 176,962 x 8,116,559 4,687,474,081

* Ran sparse CP decomposition on tensors from the FROSTT collection.

» Compared STS-CP against random and hybrid versions of CP-ARLS-LEV.
* One of few randomized algorithms designed for sparse tensors.
« For an N-dimensional tensor, sample complexity is O(RY~1/(s5)) per solve.



Accuracy Comparison for Fixed Sample Count
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Accuracy on Individual Least-Squares Problems
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Fit vs. ALS Update Time
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Fit vs. ALS Update Time, Reddit Tensor, R = 100.



» Can the quadratic-in-R sampling cost be reduced?
» Can we apply to other tensor formats (e.g. MPS / tensor train)?

» Work in progress: distributed-memory sampling.



Thank You! Read the preprint, and try out the code.

https://arxiv.org/abs/2301.12584

https://github.com/vbharadwaj-bk/fast_tensor_leverage


https://arxiv.org/abs/2301.12584
https://github.com/vbharadwaj-bk/fast_tensor_leverage

Backup Slides



Comparison to Countsketch

Countsketch Matrix: Sampling Matrix:

0 0 -1 10 00010

1 0 0 00 01 000

0 0 0 01 00100

0 -1 0 00 01 000
One nonzero per column. Every row in One nonzero per row. Every row in my
my input is added / subtracted to output is a copy-pasted row from my
exactly one row of my output. input.

Page 19, “Sketching as a Tool for Numerical Linear Algebra”, Woodruff.



Approaches to KRP Leverage
Score Sampling



Approach 1: Exhaustive Precomputation

* Only a finite number of values for 5,. Precompute and store all possible
conditional distributions for s,, and similarly for s, 5,...

* Preprocessing time is Q2 (IV), not viable for large 1.

Preprocessing Time ‘ Time for J Samples ‘ # Samples Required
Q(IN) | O(JN) | O(R/(26))




Approach 2: Ignore the Dependence

+ Sample independently from U, ..., U, based on the leverage scores of each
factor matrix. Approach used by Cheng et al., Larsen and Kolda.

* No longer sampling from the exact leverage score distribution, so require
O(RY /(6)) samples to achieve the (¢, ) guarantee.

« Efficient if R, N low enough. Can easily update if one matrix U; changes.

Preprocessing Time ‘ Time for J Samples \ # Samples Required
O(NIR?) | O(JN) | O(RN/(e9))




Approach 3: Compute Full Conditional Distribution for each Sample

+ Compute the full conditional distribution p(s, = s, | §; = s,) for each draw
during sampling. Approach used by Malik et al. (TNS-CP).

« Costs O(IR?) per matrix U, per sample.

» Works well if I is low enough (many dense tensor applications), but
performance degrades for I > 103.

Preprocessing Time ‘ Time for J Samples \ # Samples Required
O(NIR?) | O(JNR?I) | O(R/(£6))




Approach 4: Segment Tree Sampling (Ours)

* View the conditional distribution as a mixture of several components.

* After preprocessing, sample a component of the mixture via binary search
without computing all values from the conditional distribution.

» For R ~ 102, we achieve a sampling time that is practical for sparse tensor
decomposition with mode sizes in the tens of millions.

Preprocessing Time ‘ Time for J Samples ‘ # Samples Required
O(NIR?) | O(NR® + JNR?log ) | O(R/(e6))




Main Theorem

Theorem

Given matrices U, ...,Uy, U; € R"*F Vj, there exists a data structure with the
following properties:

1. Its construction time is O (N1R?), and its storage cost is O (NIR). If matrix
U, changes, it can be updated in time O(IR?)

2. Using O(R?) scratch space, it can draw J samples from the KRP
U, ©...© Uy according the leverage score distribution on its rows in time

O(NR?*+ JNR?logl).

It can also draw samples from the KRP of all matrices excluding one.



Complete Proof of Main Result



Part 1: Segment Tree Sampling

* Given probability distribution ¢4, ..., ¢;, how do you sample from it efficiently?

» Simple Algorithm: Binary-Search Inversion Sampling
.. . . .. . i—1 %
1. Divide [0, 1] into I bins. Bin i has endpoints [ZFO aj, Zj:O qj>.
2. For each sample, draw a real number D uniformly from [0, 1]. Binary search on
the list of endpoints to find the containing bin, return its index.

* Preprocessing cost: O(I) (prefix sum). Per-sample cost: O(log I) (binary
search).



Part 1: Segment Tree Sampling

Modify the previous procedure as follows:

 Binary search until remaining interval has
at most F' bins, iterate through what

remains to find bin containing D. @
- View as a traversal of a segment tree T . @ @
from root to a leaf. Each node equipped
with segment S(v) C [1..1]. | qz | q4 | qo | qg |

» Key: Atinternal nodes, don’t need
individual probabilities ¢, - only their sum.



Part 1: Segment Tree Sampling

Define functions 7 : T, » — R, and

q: T, r — RY. Use these functions Algorithm 1 STSample(T; . (), ("))
to branch at internal nodes and 1: ¢ == root(T; z),low = 0.0, high = 1.0
3: while ¢ ¢ leaves(T} 1) do
PrOpOSition 4:  cutoff := low + m(L(c))
» 5 if cutoff > D then
lfm(v) = ZiES(U) q; and 6 ¢ := L(c), high := cutoff
q(v) ={q; | i € S(v)} at each leaf, 7o else
) . 8: ¢ := R(c),low := cutoff v
STsample returns index i with 9: return Sy(v) + argmin,_ (low + Z;—[ qle)lj] < D)

probability q;.



Part 1: Segment Tree Sampling

* If m runs in time 7, per call and ¢ runs in time 7, (F') per call, the complexity of
STSample is
O(7y log[I/F] + 75(F))
« If we have efficient functions to compute m and ¢, we can avoid a linear factor
I when drawing each sample.



Part 2: A Simpler Row Sampling Problem

+ Suppose we wish to sample .J rows from a matrix A € R’*%. Let 5 be the RV
for a sample index, h € R, Y € RE* be a vector and a p.s.d. matrix.
* Impose

T

p(g =35 ‘ h> U>Y) = qh,U,Y [S] = C_1<hhT7 U [Sv :] U [87 :] 7Y>

Here, (-, -,-) means "multiply three matrices elementwise, take sum of all
entries in product” (generalized inner product).

* The twist: Y is the same for all row samples, but & is potentially unique for
each one.



Part 2: A Simpler Row Sampling Problem

* Solution: initialize a segment tree T; .. For any segment S(v) associated with
a node v, sum both sides:

S pE=s|hUY)= > CH U] Uls,d,Y)
seS(v) s€S(v)
=CYaRT, Y Uls,d] Uls,,Y)
seS(v)
- Cfl<hhT’Gu’Y>

* If GV is precomputed for each node v € T , last line of equation above
computable in O(R?) time. Produces efficient function /m for STSample.



Part 2: A Simpler Row Sampling Problem

Lemma (Efficient Row Sampler)
There is a data structure parameterized by integer F’ that, given a matrix A and a
p.s.d. matrix Y, satisfies the following:

* Has construction time O(I R?) and space complexity O(R?[I/F1).

* After construction, produces sample from g, ;; y in time
O(R?log[I/F| + FR?) for any vector h.

« IfY is a matrix of all ones, the time per sample drops to O(R*log[I/F] + FR).

Main Proof Idea: Precompute matrices GV in construction phase, call STSample
during the sampling phase.



Part 3: Assembling the Khatri-Rao Product Sampler

@ [01 05 -09 o.z]} 1[ 00 0102 ..osjj ﬂ[[ 08 0303 .0,9} @ (08 -0.1 05 .07}

U U U U

1 2 3 4

cLletA=U,0..0Uy. LetG, =U/U, G=®, G,
» Suppose we have sampled 5, = s4,...,5,_; = s;_,. Define



Part 3: Assembling the Khatri-Rao Product Sampler

* What is the distribution of s, conditioned on prior draws?

Theorem (Heavily Adapted Version of Malik 2022)

P(8 =8, |81 =81..8;1 = 55_1) = Ah_, U, ,Gop (5]

» Matches our lemma! Use the data structure that we developed earlier.



Part 3: Assembling the Khatri-Rao Product Sampler

P(S = 8p | 81 = 81851 = Sp_1) = 4h_,,U, .G}, (5]

* If lemma applied directly to conditional distribution p(s, = s, | 5., = s.;), you
either incur
« O(IR?) space complexity for F =1
« O(NR3logI) time per sample for F = R
+ To fix: observe that G-, is p.s.d., identical for all samples. Take its

eigendecomposition
G>k — ‘//&‘/T



Part 3: Assembling the Khatri-Rao Product Sampler

+ Define matrix W € R"*% elementwise by

W [t,u] o= (hophl U [t UtV ] V] )

<k’
 After some manipulation, we can write

R
W, ul
hoy U, oy = 2 € MU s
s = 2 M
where e[u] = X, |W [, u],|. Since A, > 0, this is a mixture distribution.
Sample in two steps:
» Choose a component u according to weight vector e
+ Sample an index in I;, according to W [, u].



Part 3: Assembling the Khatri-Rao Product Sampler

* Let € be a normalized version of e. Manipulation yields

€= h_, VAVT G,

Use our lemma with F' = 1 to efficiently select a component.

« Suppose we select component & = u. Then the row index ¢ drawn according
to distribution W [:, u| is distributed as

plt=t|a=u)= Qh_poViul,U,,0) [t -

Use our lemma again with F' = R to draw a row index.



Part 3: Assembling the Khatri-Rao Product Sampler

* First sampling phase reduces the gram matrix G, to an outer product from
one of its eigenvectors. Reduces runtime for procedure ¢ in the second

sampling phase

» Second sampling phase can choose F' = R to control space complexity.



Application to ALS CP Decomposition

Corollary (STS-CP)
Suppose T is dense, and suppose we solve each least-squares problem in ALS
with a randomized method. Leverage score sampling using our data structure
achieves the (e, §) guarantee with O(R/(¢6)) samples. The overall complexity is
#it- N
o(*5

€

(NR3logI + IR2)>

For sparse tensors, STS-CP preserves tensor sparsity in the downsampled
least-squares problem.



Additional Results




Reference Implementation

Python Reference Implementation

1 e
2 samples = []
Algorithm 2 Snippet of KRPSample Pseudocode 3 for _ in range(J):
1. 4 h = np.ones(self.R)
2: ford =1..J do 5 sample = []
3 h=[L..1" 6 for k in range(self.N):
4. fork + jdo 7 if k == j:
5: ), == RowSample(E},, h) 8 continue
(3 Z; := RowSample(Z,,h ® (V}, [:, 1)) 9 u_k = E_samplers[k].RowSample(h)
7 h = Uy, [f,7] 10 h_scl = h * Lambda_VT[k][u_k]
8 sy = (i) 11 t_k = self.Z samplers[k].RowSample(h_scl)
9: return 5,/:, 12 h += self.ULk][t_k, :]
- 13 sample.append(t_k)
14 samples.append(sample)
15 return samples



Verifying Our Sampler’s Output

—— True Leverage Score Distribution

0.025 -
Histogram of Draws from Our Sampler
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Fit vs. ALS Update Time
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» Theoretically superior sample complexity of STS-CP verified through
experiments.

» Higher accuracy per least-squares solve for STS-CP translates to better final
tensor fit.

* The runtime overhead of STS-CP is justified on sparse tensors with billions of
nonzeros.

* On smaller tensors, STS-CP may benefit from dynamically adapting the
sample count J.
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